
A Software Arhiteture for Programming

Roboti Systems based on the Disrete

Event System Paradigm

Antonio C. Dom��nguez-Brito

1�

, Magnus Andersson

2y

,

and Henrik I. Christensen

2z

CVAP244, Teh. Rep. ISRN KTH/NA/P{00/13{SE

Centre for Autonomous Systems, KTH (Royal Institute of Tehnology)

S-100 44 Stokholm, Sweden, September 2000

1

University of Las Palmas de Gran Canaria, Spain

2

Centre for Autonomous Systems, KTH, Sweden

Abstrat

Transfer and reuse of software designed spei�ally to ontrol roboti

systems is diÆult, and often apparently impossible due to the diver-

sity of hardware and software typially involved. Software reuse is not

only a problem of roboti systems. In other �elds, as business soft-

ware, "de fato" standard tools to de�ne software omponents an be

found, and a supplier omponent software industry even exists. On the

ontrary in the roboti �eld there are not any established standards to

address this problem. The present work has been addressed to estab-

lish grounds to oneive what ould be a feasible onept of software

omponent for robotis systems.

Software for ontrol roboti systems may be very heterogeneous,

involving numerous devies and software, but, from a generi point

of view, it an be onsidered as a network of weakly oupled parallel

and/or onurrent ative entities { proesses or threads { interating

asynhronously among them in some way. In this doument is pre-

sented a software model whih identi�es these ative entities with soft-

ware omponents and de�nes their interation, modeling suh entities

as port automata, and their interation through a small set of opera-

tors taken from proess algebra. This software framework is presented

along with a prototypial example, an obstale avoidane behavior for

a mobile robot, illustrating that transfer and reuse of ode is possible

using this software arhiteture.

�

adbrito�dis.ulpg.es

y

sungam�nada.kth.se

z

hi�nada.kth.se

1

1 INTRODUCTION 2

1 Introdution

Transfer and reuse of software designed spei�ally to ontrol roboti sys-

tems is diÆult, and often apparently impossible due to the diversity of hard-

ware and software typially involved. Development from srath is not an

unommon situation in many systems, even at the same laboratory. Other

times an important software integration e�ort must be done to reutilize

software.

Software reuse is not only a problem of roboti systems. In other �elds, as

business software, "de fato" standard tools to de�ne software omponents

an be found, { e.g., AtiveX from Mirosoft { and a supplier omponent

software industry even exists. On the ontrary in the roboti �eld there are

not any established standards to address this problem.

During last years a boosting of hardware features along with a derease

of pries has reated a big demand for day-to-day robotis appliations,

and has evidened the lak of standard tools to failitate the design and

implementation of robotis systems, and also to de�ne software omponents

for roboti systems.

A software omponent should be something like an eletroni omponent

or hip in eletroni industry. It is many years that o�-the-shelf hips an

be bought and deployed in other parts of the world. Eah omponent has

a lear funtionality and a well established external interfae. Furthermore,

numerous standard tools exist to design eletroni devies based on the

omposition, assembly and ombination of these eletroni omponents. A

similar panorama would be desirable for the roboti industry.

The present work has been addressed to establish grounds to oneive

what ould be a feasible onept of software omponent for robotis systems,

and one ideas were oneived, to try to put them into pratie.

Previous work has been arried out on software arhitetures being able

to grasp the inherent features of roboti systems, and in turn, to map sys-

tems designs into working implementations. A large researh e�ort has been

devoted to hybrid arhitetures for autonomous mobile robots { for exam-

ple, ISR [1℄, AuRA [2℄ [3℄, RAP [4℄, ATLANTIS [5℄, Saphira [6℄, and

G

en

oM [7℄ {, whih have usually three layers: the bottom layer or rea-

tive layer, the intermediate layer or task ontrol layer and the top layer or

deliberative layer. The reative layer is the losest to the hardware, so it

deals diretly with sensors and atuators, and tries to embody system be-

haviors. Typially, the behaviors orrespond to software modules or a sort

of ombination of them. The seond layer is a sequener of behaviors in the

lower layer. The task exeution layer is in harge of initiating, ombining,

and monitoring behaviors to ahieve tasks de�ned in terms of reative layer

behaviors. Last layer, the deliberative one, is usually responsible for long-

term deliberative planning, where plans are de�ned in terms of task arried

out by the seond layer.

1 INTRODUCTION 3

The mentioned hybrid arhitetures onern with layers interation, be-

haviors integration, sequeners and planners. The present work must be

onsidered in this ontext, sine it has been motivated by one of these ar-

hitetures { ISR [1℄ {, but it is intended to look for a onept of a generi

software omponent for roboti systems, giving roboti developers the a-

paity to design and implement systems through ombination, assembly and

omposition of them, and at the same time, being able to grasp the inher-

ent partiularities of roboti software, that is, ability to deal with di�erent

hardware and software. Suh omponents would just be another level of

abstration between design and implementation, in developer hands, to im-

plement roboti systems.

Typially, roboti systems software an be seen as a network of parallel

and/or onurrent ative entities, proesses or threads, interating asyn-

hronously among them in some way. A software model whih identi�es

these ative entities with software omponents, and de�nes their intera-

tion, is presented in this doument. In this model, these ative entities are

weakly oupled, so the global system behavior is the result of the interation

among the entities, and also of the loal behavior of these ones, therefore,

one the funtionality of eah partiular entity has been de�ned, the global

ontrol sheme resides on how these entities interat on eah spei� system,

and thus, on the on�guration of its network of parallel and/or onurrent

ative entities. The onept to model these ative entities has been taken

from the Disrete Event Systems { DES { framework [8℄. Eah entity is

embodied as a thread, and modeled as a Port Automaton [9℄ [10℄ [11℄. In

this framework, these entities has been alled simple DESs or just DESs, and

their ombination and interation de�nes the behavior of the whole system.

A small set of operators taken from proess algebra [12℄ [13℄, has been used

to formalize ompositions of DESs, suh assemblages de�ne what has been

alled ompound DESs, and an be used as DESs in other assemblages or

ombinations.

Another port automata based software arhiteture has been developed

at CMU [14℄ [15℄. It was mainly addressed to ahieve reon�gurability

and software reutilization for real time systems, onretely, a reon�gurable

roboti arm. It de�nes a software omponent, the port objet, relies on ser-

vies of a spei� real time operating system, Chimera [16℄ [17℄, for software

assembly, and was designed for a partiular hardware set: real time proess-

ing units and VME buses. The work presented in this paper pursuits has

also de�ned a software omponent based on port automata theory, but there

are no assumptions about a spei� operating system with a partiular set

of servies relying on a espeial hardware set. The only assumption is that

the operating system must support multithreading.

Next setion, setion 2, exposes briey the motivations and goals. Se-

tion 3 provides the formal and theoretial grounds whih onform the on-

eptual model of the software arhiteture, and at the same time, introdues

2 MOTIVATIONS AND GOALS 4

a prototypial example whih will be used along the rest of the doument.

Setion 4 illustrates the software arhiteture itself through its use with

the example previously introdued. Finally, on setion 5, onlusions are

exposed, and urrent software framework limitations and probable future

trends are indiated.

2 Motivations and Goals

Reutilization and deployment of software for robotis systems should be as

easy as buying eletroni omponents to make your own eletroni designs.

A similar panorama an be found in business omputing, where a software

omponents industry is rising.

The former paragraph resumes the motivations and goals of the work

presented here, and as starting goals to understand the insights of the prob-

lem, the following objetives were established:

� Formalizing and devising a onept of software omponent, spei�

to roboti systems, whih should be reusable and deployable, de�ning

deployable as software whih an be transferred and statially added to

any projet, meaning that the software an be transferred to another

system at linking time without having to add new "glue" ode [14℄ to

interfae the omponent to the rest of the system, obtaining the same

funtionality that was ahieved when it was reated and tested �rst.

� Formalizing and devising ombinations or assemblages of these soft-

ware omponents being possible that suh ombinations an be reuti-

lized, deployed and ombined in the same manner that simple ompo-

nents an be.

Thus, the aim is to design a software arhiteture whih is able to embody

in implementations the onepts expressed in the former two points, and also

able to test suh ideas in real roboti systems.

3 The Coneptual Model

As it was mentioned earlier in setion 1, the introdution, the software typ-

ially involved in the ontrol of roboti systems may be very heterogeneous,

involving numerous hardware devies and software. Suh a heterogeneity

ould be abstrated through a model of interation among the di�erent ele-

ments omposing the system, thus, from this point of view, a roboti system

might be onsidered as a network of weakly oupled parallel and/or on-

urrent ative entities { proesses or threads { interating asynhronously

among them in some way. This interation among entities and the loal

behavior of eah one de�ne tasks to ahieve by eah spei� roboti system.

3 THE CONCEPTUAL MODEL 5

This onept of ative entity has been identi�ed as the software omponent

to be modeled.

To formalize this weakly oupled parallel/onurrent ative entity, as a

software omponent, the onept of port Automaton [9℄ has been used. Fur-

thermore, to ahieve tasks it is neessary to ombine automata onforming

an automata network. The onept of port automaton establishes a lear

external interfae, its ports, for external interation among port automata,

but, it is also needed a formal framework to express how these automata

relate eah other in run time. A small set of operators has been taken from

proess algebra [12℄ [13℄ to de�ne a omposition of port automata. These

operators allow us to assert that the omposition is also a port automaton,

as its omponents.

Two key onepts have been devised to map port automata and their

ombinations to real software implementations: the onept of a simple DES

{ Disrete Event System { or DES whih models a port automaton, and

what will be de�ned as a Compound DES, whih formalizes a omposition

of DESs and/or another Compound DESs.

These two key onepts will be presented in next subsetions, and at

the same time, to illustrate how this model an be used in a real system,

an example will be presented. Conretely, the example will show how an

obstales avoidane behavior for a mobile robot might be implemented using

this oneptual framework.

3.1 DESs

A Simple DES de�nes a parallel or onurrent ative entity { a proess

or a thread { as a Port Automaton [9℄, i.e., a Finite State Automaton {

FSA { that uses ports for all external ommuniation. This FSA exeutes

asynhronously transiting among states as a result of its own ativity or

upon reeption of events/signals through its input ports.

Thus the port automaton onept establishes a lear distintion between

the internal funtionality of an ative entity { its FSA { and its external

interfae { its ports {.

From [9℄ and [13℄, a port automaton P an be formally de�ned as a

generator G = (L;Q; �; Æ; �;X; Y; F), where:

� L is the set of ports.

� Q is the set of states.

� � � Q is the set of initial states.

� X = fX

i

: i 2 Lg, where X

i

is the input set for port i.

� Y = fY

i

: i 2 Lg, where Y

i

is the output set for port i.

3 THE CONCEPTUAL MODEL 6

� Æ : Q� t

i2L

X

i

! Q is the transition map, where

t

i2L

X

i

= f(x; i) : x 2 X

i

g is the disjoint union of the X

i

's.

� � = f�

i

: i 2 Lg, where �

i

: Q! Y

i

is the output map for port i.

� F � Q is the set of �nal states.

All subjet to the axiom that for eah q 2 Q : fx 2 X

i

: Æ(q; (x; i)) 6=

;g = ; or X

i

assuring that, in any state q 2 Q, for any port i, either all

elements of the input set X

i

will be apable of being aepted or none of

them will.

In our framework, L = L

i

[L

o

suh that L

i

\ L

o

= ;, where L

i

is

the set of input ports, and L

o

is the set of output ports. A port paket

is de�ned as an information unit whih an be reeived through an input

port, and/or issued through an output port. So, elements of sets X

i

's and

Y

i

's, orresponding to eah input and output port respetively, will be all

possible port pakets reeived or issued through suh ports. Port pakets

are also lassi�ed in types of ports pakets, and only one type of port paket

an be assoiated with eah input or output port.

Figure 1 depits a port automaton, a DES, from an external point of

view, where the port automaton is represented by a irle, input ports by

arrows oriented towards the irle, and output port by arrows oriented out-

wards. This �gure depits how the internals of a port automaton are isolated

from outside by using the mehanism of ports. Figure 2 shows the internal

view of a generi DES, the irles are the states of the automaton and the

arrows, transitions among its states based on port pakets reeived through

its input ports. In the �gure p

ij

denotes that a port paket j of type i

has been reeived through an input port. The �gure does not illustrate the

automaton funtionality, only displays its states and transitions.

i1

in

o1

om

Figure 1: The external

view of a DES (the irle):

input and output ports

(the oriented arrows).

1

si

s2 sj

sk

p
ab

p
cd

p
ef

p

s

gh

Figure 2: The internal generi view

of a DES: states (irles) and transi-

tions (oriented arrows) provoked by

port pakets. Double irles mean �-

nal states.

3 THE CONCEPTUAL MODEL 7

3.1.1 Default Ports, Default States and the Default Automaton

The model establishes two default ports and six default states for all DES.

The default ports are: the ontrol port, , and the monitoring port m. The

default states are: idle, running, abort, suess, fail and dead.

Figure 3 depits the default ports. The ontrol port is an input port

used to fore a state in a DES. The states whih an only be fored exter-

nally are running, abort and dead. Control pakets are the kind of port

pakets reeived in this port. The monitoring port m is an output port

used by eah DES to indiate its internal state hanges. Eah time a state

hange happens in a DES a monitoring port paket, indiating this hange,

is emitted through this port. Therefore, whih these two ports, ontrol and

monitoring of eah DES is possible.

1i

in

o1

ok

c m

Figure 3: The default ports. The

ontrol port and the monitoring

port m.

In our framework eah DES is a thread and is modeled through the

same automaton struture, the Default Automaton, as shown in �gure

4. The idle state is the starting state. There, the thread orresponding

the DES has been launhed and resoures has been alloated for it, but is

suspended waiting on its ontrol port. The running state, in dashes in the

�gure, represents the not yet de�ned part of the automaton whih is really

in harge of giving funtionality to eah DES { later referred to as the user

automaton {. This state just depits the states and transitions that should

be established by the developer/user. To go into running state a running

ontrol paket,

r

, must fore the state hange. When a DES in running

state is interrupted or aborted, the DES makes a transition to the abort

state. An abort ontrol paket,

a

an only fore this hange. A DES whih

�nishes suessfully its work, goes to suess state, the transition to this

state must be done by the DES itself. A fail state is reahed when the DES

fails its task, and as with the suess state, the hange must only be an

own initiative of the DES itself. The two former states an not be fored

using the ontrol port. From idle, abort, suess and fail states the DES

is suspended waiting on its ontrol port keeping thread resoures. From

3 THE CONCEPTUAL MODEL 8

these states, a running ontrol paket makes the DES get into running

state, and a dead ontrol paket,

d

, brings it to dead state whih means

resoures release and self destrution, and is the unique �nal state.

How it was established at the beginning of setion 3.1, in our model

of disrete event systems, events are modeled as port pakets, so internal

events, i.e. transitions originated by the DES itself, are also modeled by port

pakets, exept that, in this ase, the involved input and output ports are

only used for internal ommuniations. In partiular, eah modeled internal

event will have assoiated an input port and an output port, thus, when the

DES itself provokes the internal event, it sends out its orresponding port

paket through its assoiated output port and will reeive the same port

paket through the assoiated input port, ompleting, in suh a way, a tran-

sition. Examples of these kind of events are the transitions to suess and

fail states in �gure 4. The ports assoiated with port pakets orresponding

to internal events are not shown in automaton �gures along this doument,

but it is assumed that all internal events are modeled like this.

Thus, a DES is a generator G, where by default 2 L

i

, m 2 L

o

,

fidle; running; suess;abort; fail;deadg � Q, � = fidleg, f

r

;

a

;

d

g

� X, is the input set for , internal port pakets suess and fail are

also inluded in X, the monitoring port pakets are inluded in Y , and

are the output set for m, Æ

default

� Æ is de�ned aording to �gure 4, and

F = fdeadg. The default automaton de�nes two new sets of states:

� S = fsuessg � Q, is the set of funtional suessful states, whih

means that the automaton has �nished its task suessfully.

� U = fabort; failg � Q, is the set of funtional unsuessful states,

whih means that the automaton has ended up its task with unsu-

essful results.

In [13℄ the sets S and U are the sets F

s

and F

u

, respetively, suh that

F = F

s

[F

u

where F

s

\ F

u

= ;. In this framework, S \ U = ;, but S and

U are not inluded in F , beause aording to �gure 4, the automaton does

not �nish when it reahes the states inluded in both sets, and it an be

brought to running state again for a new task exeution.

3.1.2 Input and Output Ports, States and Transitions

Non default input and output ports, i

i

's and o

i

's respetively in �gure 3,

are user de�ned, inluding all its types of port pakets. Non default states

and transitions among them are also user de�ned. Formally, for eah DES,

the following sets are user de�ned:

� L

i

�f; suess

i

; fail

i

g = fi

i

g, i 2 f1; : : : ; ng is the set of non default

input ports.

3 THE CONCEPTUAL MODEL 9

deadfailrunning

abort

idle

success

cd

cr

ca

cd

cd

cd

success

ca

cr

cr

cr

fail

Figure 4: The Default Automaton.

� L

o

� fm; suess

o

; fail

o

g = fo

i

g, i 2 f1; : : : ; kg is the set of non

default output ports.

� (X �f

r

;

a

;

d

; suess; failg)[(Y �f monitoring port pakets g) is

the set of non default port pakets.

� Q � fidle; running; suess;abort; fail;deadg is the set of non de-

fault states.

� Æ�Æ

default

is the transition map based on non default input ports, and

not established in �gure 4.

� and �, the output map.

where suess

i

and suess

o

, and fail

i

and fail

o

are, respetively, the

orresponding input and output ports for modeling internal events suess

and fail.

3.1.3 Input and Output Parameters

A running port paket,

r

, an transport an input parameter. Input

parameters are user de�ned data, and an be used to on�gure or initialize

eah DES at the beginning of eah task exeution. When a DES reahes

its suessful state, suess, it sends a monitoring port paket through its

portm, whih an transport an output parameter. As input parameters,

output parameters are also user de�ned data for eah DES, and an be used

as input parameters for other/s DES/s.

3 THE CONCEPTUAL MODEL 10

3.1.4 DES Examples: the Sensors, an Obstales Detetor and

the Avoid DES

Several DESs have been devised to show how to implement an obstale

avoidane behavior for a mobile robot using this framework. This example

involves three types of sensors: a belt of sonars, a laser range �nder and a

stereo roboti head, orresponding eah one of them with a DES. Besides,

there are another two additional DESs: an obstale detetor and a generator

of avoidane trajetories, the avoid DES. All of them will be presented next.

The sensors will be modeled sharing the same DES struture, the generi

sensor. Figure 5 shows the DES automaton for the generi sensor, the �g-

ure only displays user de�ned states and transitions based on user de�ned

input ports. Notie that what is shown in the �gure would be the running

state in �gure 4, the default automaton, whih is hosting the DES, that is,

the automaton in the �gure must be onsider into the ontext of the default

automaton. The running pseudo state in the default automaton onsti-

tutes or represents the part of the automaton whih must be ompleted by

the user, whih is a sensor in �gure 5, and will be referred to as the user

automaton. That means that from every state in the user automaton a

transition to abort state in the default automaton is possible, just reeiving

an abort ontrol paket,

a

, and also, from all of them it is possible to tran-

sit to states suess and fail, although in suh ases it must be expliitly

spei�ed by the user. Additionally, the starting state in the user automaton

is the entry state where the default automaton gets into when a running

port paket,

r

is reeived. All following �gures illustrating user automata

for several DESs will not show these transitions to default automata states,

exept when transitions to suess and fail our, due to these last ones

must be spei�ed for eah DES, the other ones are assumed by default.

Returning to the generi sensor in �gures 5 and 6, there is only a user

de�ned input port, tik, whih ould be a lok tik or an interruption om-

ing from a hardware devie whih is the sensor. The automaton only has

two user de�ned states: inative and readandsend. The inative state

is the entry state. Normally resoure alloation is loalized in the entry

state, so a fail during alloation usually provokes a transition to default au-

tomaton state fail. One resoure alloation is ompleted suessfully, the

automaton just wait for a port paket through its input port tik to transit

to readandsend. In the readandsend state the automaton ollets infor-

mation from the assoiated sensor devie, then, this information is paked

in port pakets and sent out through its output port sense. During this

sensory data olletion might happen a fail on the sensor whih would ause

a transition to the fail state in the default automaton. This DES never

goes to the default automaton state suess beause it has a ontinuous

operation without a spei� goal, it only has to proess sensory data, hene,

to �nish it, it must be aborted using an abort ontrol paket

a

. Figure 6

3 THE CONCEPTUAL MODEL 11

displays the external view of the DES sensor whih embodies the generi

sensor.

and
send

read

to fail state

inactive
tick

tick

fail

to fail state

fail

Figure 5: The DES automaton

for the generi sensor. The de-

fault automaton and the ontrol

port are not shown.

sensor
sense

tick

Figure 6: The

generi DES sensor

whih implements

the generi sensor.

Control and moni-

toring ports are not

shown.

All sensors involved in the avoidane behavior share the same DES stru-

ture that the generi sensor depited in �gures 5 and 6, and they are: the

DES sonarsensor modeling the belt of sonars, the DES lasersensor mod-

eling the laser range �nder, and the DES visionsensor modeling the stereo

roboti head ameras.

Figure 7 shows the DES automaton for an obstales detetor based on

information whih omes from sensors modeled as the generi sensor pre-

sented in previous paragraphs. The inative state is homologous to the

state with the same name in �gure 5. It is also an entry state, and resoure

alloation is arried out when the automaton enters into this state �rst,

so, a transition to default automaton state fail is possible. One resoure

alloation has been done the state inative is a doing-nothing state, just

waiting for sensory information. The automaton also goes into this state

when free spae is deteted, whih is indiated by port pakets on its in-

put port freespae. When sensory information gets into through the input

port sense, the automaton enters into its detet state, where obstales are

deteted based on sensory information, issuing obstale detetions through

its output port obstales. If nothing is deteted, a freespae port paket is

issued through its output port freespae, whih is normally onneted to

its synonymous input port freespae. This DES is also an automaton in

ontinuous operation, so, it does not have any transition to the default au-

tomaton state suess. Figure 8 shows an external view of the DES detet

whih embodies the mentioned automaton, only user de�ned input and out-

put ports are shown. Notie that to ombine this DES with sensors modeled

like the generi sensor, is neessary that its input port sense transports

the same type of port paket that the one emitted by these sensors through

3 THE CONCEPTUAL MODEL 12

their output port sense, see �gure 6, whih also implies that all sensors

should produe the same kind of port paket on this port.

inactive

to fail state

detect

sense

freespace

sense

fail

Figure 7: The DES automaton for

an obstale detetor. The default

automaton and the ontrol port

are not shown.

detect
sense

obstacles

freespace

freespace

Figure 8: The generi DES

detet whih implements an

obstale detetor. Control

and monitoring ports are not

shown.

Figure 9 shows the DES automaton for obstale avoidane. It has two

states, the inative state whih is the entry state, analogous to the state

with the same name in �gure 5. It also an get into the default automaton

state fail, if resoure alloation fails. One a suessful resoure alloation

is arried out the automaton waits for deteted obstales port pakets, just

to get into its seond state, the avoid state, where avoidane veloities for

the mobile robot motors are omputed based on obstale detetions reeived

through its input port obstales, determining an obstale avoidane traje-

tory for the robot. Then, these veloities are paked and sent out through

its output port veloities. As previous DESs, the sensor DESs and the ob-

stale detetor, this DES is also a ontinuous operation automaton without

any transition to the default automaton state suess. Figure 10 depits

the DES avoid only showing user de�ned input and output ports.

3.2 Compound DESs

One a set of DESs have been de�ned, instanes of these ones may be utilized

to onform a network of port automata. A Compound DES, is a omposition

of instanes of DESs and/or another ompound DESs. Figure 12 explains

graphially this onept, where the ompound DES is a omposition of two

DES instanes, one of DES a, a

i

, and one of DES b, b

i

, whih are shown

in �gure 11. Figure 13, depits a ompound DES d made of an instane of

ompound DES ,

i

, and an instane of DES b, evidening that instanes

of ompound DESs are funtionally equivalents to simple DESs in terms

of omposition and instantiation, so a ompound DES is a port automaton

3 THE CONCEPTUAL MODEL 13

fail

to fail state

avoidinactive
obstacles

obstacles

Figure 9: The DES automaton for ob-

stale avoidane. The default au-

tomaton and the ontrol port are not

shown.

avoid

obstacles

velocities

Figure 10: The DES

avoid whih imple-

ments the obstale

avoidane automaton.

Control and moni-

toring ports are not

shown.

whih is a omposition of port automata. Control and monitoring ports are

not shown.

a b
i1 i1

i2

o1
o2

o1
o2

Figure 11: Two DES: a

and b.

a i bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

c

Figure 12: The ompound

DES : a omposition of a

and b.

ic bi
i1 i1

i2

o1
o2

o1
o2

i1

o1o2

d

Figure 13: The ompound

DES d: a omposition of

and b.

3.2.1 Exeution Operators

A small set of operators has been taken from proess algebra [12℄ [13℄ to

de�ne a ompound DES as a omposition of DESs and/or ompound DESs

3 THE CONCEPTUAL MODEL 14

instanes, these operators allow us to assert that the ompound DES is

also an automaton, as its omponents, and have been alled exeution

operators. In the following de�nitions, when it is said that a DES instane

�nishes, it is in terms of task �nalization, that is, the DES instane has

reahed a state inluded in the sets S or U . Also, a DES instane is said

that is suessful when it reahes the suess state in �gure 4, is aborted

when it gets into abort state and fails when it goes to fail state in the same

�gure. In terms of omposition, when a DES is used, it stands for a DES or

for a ompound DES, indistintly.

� Sequential Operator What is known as sequential omposition,

and is represented by the symbol ';'. Let a and b be two DESs, then

the ompound DES =a;b is suh that an instane of ,

i

, behaves

like an instane of a, a

i

, until this one �nishes, then behaves like an

instane of b, b

i

. When b

i

�nishes,

i

�nishes with the same state as

b

i

. If a

i

is aborted then

i

is also aborted.

� Conditional Operator What is known as onditional omposi-

tion, and is represented by the symbol ':'. Let a and b be two DESs,

then the ompound DES =a<v>:b(v) is suh that an instane of ,

i

, behaves like an instane of a, a

i

, until this one �nishes suessfully

omputing the output parameter v, then behaves like an instane of b,

b

i

, whih uses v as its input parameter. When b

i

�nishes,

i

�nishes

with the same state as b

i

. If a

i

�nishes unsuessfully, i.e., it fails or

is aborted,

i

�nishes with the same state as a

i

.

� Conurrent Operator What is known as parallel omposition,

and is represented by the symbol 'j'. Let a and b be two DESs, then

the ompound DES =ajb is suh that an instane of ,

i

, behaves

like an instane of a, a

i

, and an instane of b, b

i

running in parallel

{ or onurrently {, and the state of the omposition is a state pair

whih ombines the states of both instanes { see [12℄ for details {,

i

�nishes with the same state as the last �nished instane, either a

i

or

b

i

.

� Disabling Operator What is known as disabling omposition,

and is represented by the symbol '#'. Let a and b be two DESs,

then the ompound DES =a#b is suh that an instane of ,

i

,

behaves like an instane of a, a

i

, and an instane of b, b

i

running in

parallel { or onurrently {, and its state is the state pair onformed

by the states of both instanes,

i

�nishes with the same state as the

�rst �nished instane, either a

i

or b

i

, the not yet �nished instane is

aborted.

Thus, a omposition of DESs an be established based on this four oper-

ators, so, for example, let a, b, , d and e be �ve DESs, a ompound DES f

3 THE CONCEPTUAL MODEL 15

an be de�ned as f = a<v> : ((b#)(v) ; (dje)(v)), note that v must

be the input parameter for b, , d and e.

3.2.2 The DES Exeutor

One a ompound DES has been de�ned as a omposition of other DES

and/or ompound DES instanes, when it is instantiated, an instane of a

DES provided by the arhiteture, theDES Exeutor is in harge of ontrol

and monitoring the omposition during exeution. Figure 14 shows how a

DES Exeutor instane, exe, use the ontrol and monitoring ports of DES

and ompound DES instanes, d

i

's, inside the ompound DES. It disposes of

its

i

's output ports for ontrolling eah DES or ompound DES instanes,

and its m

exe

input port for monitoring all of them. Additionally, its ontrol

and monitoring ports, andm, onstitute the ontrol and monitoring ports

of the ompound DES instane, therefore, it is also in harge of traking

the state of the whole omposition depending on how it has been de�ned in

terms of exeution operators. Any DES may have an input parameter and/or

and output parameter, so a omposition may have one or both of them too,

thus, the DES Exeutor will inherit an input and/or an output parameter

depending on how it has been de�ned in terms of exeution operators and

on whih DES and/or ompound DES instanes onform the omposition.

3.2.3 Inner Mapping and Outer Mapping

To de�ne a ompound DES, besides of indiating whih DES and/or om-

pound DES instanes are involved, and how these instanes are related

through the exeution operators, it is also neessary to speify how om-

ponent DES' ports are onneted internally in the ompound DES, port

mapping that will be referred to as the inner mapping, , and further-

more, what instanes ports are visible to external DES or ompound DES

instanes, the outer mapping. That is shown in �gures 12 and 13, where

ontrol and monitoring ports are not shown.

Connetions among ports are not restrited in number, so an input port

an be onneted to zero o more output ports, and an output port an be

onneted to zero or more input ports. The only restrition is that the ones

involved in a onnetion should arry the same type of port pakets, soure

ports should be output ports and destination ports should be input ports.

3.2.4 A Compound DES Example: the Avoidane Compound

DES

Now the obstales avoidane behavior for a mobile robot is synthesized

through the omposition of DESs presented previously in setion 3.1.4 using

the onept of ompound DES.

3 THE CONCEPTUAL MODEL 16

d1 dn

exe
c1 cn

mexe
c c m m

c cm m

Figure 14: Control and monitoring port onnetions

in a ompound DES. The DES Exeutor instane,

exe, ontrols and monitors the DES and ompound

DES instanes, d

i

's, inside a ompound DES. It uses

itsm

exe

port to monitor all of them, and its

i

's ports

to ontrol eah one. Its ontrol and monitoring ports,

 andm, onstitute the ontrol and monitoring ports

of the ompound DES instane. User de�ned input

and output ports are not displayed.

Figure 15 depits the ompound DES avoidane whih performs obsta-

les avoidane using instanes of the di�erent DESs introdued in setion

3.1.4: the sensory DESs { the sonarsensor, the visionsensor and the

lasersensor {, the obstales detetor DES { detet { and the obstales

avoidane DES { avoid {. Thus, this ompound DES implements an ob-

stales avoidane behavior based on sensory information oming from three

types of sensors.

One the ompound DES avoidane and its di�erent omponents have

been implemented and tested, it may be used alone or as a omponent in

another ompound DES/s. As an example, in �gure 16 is shown how avoid-

ane might be utilized in an another ompound DES, gotowithavoidane,

where it is ombined with another DESs or ompound DESs. The ompound

DES gotowithavoidane is a behavior allowing a mobile robot to navigate

to a spei� plae performing obstales avoidane along a trajetory. As was

said in setion 3.1.4 the tiks input port pakets for the sensors would be

generated by timers or sensor devie interruptions. It has been assumed in

gotowithavoidane that the DES servo aesses diretly to motors sta-

tus, otherwise feedbak between this DES and the DESmotors in �gure 16

3 THE CONCEPTUAL MODEL 17

sensor
laser

vision
sensor

sensor
sonar

detect

avoid

tick

tick

tick

lasertick visiontick sonartick

sense

sense

sense

sense
freespace

freespace

freespace

obstacles

obstacles

velocities

velocities

avoidance

Figure 15: The ompound DES avoidane.

The DES Exeutor instane, and the ontrol and

monitoring ports are not shown.

should be neessary.

avoidance gotoservo

motors

freespace

velocities

freespace

avoidvels

velocities

gotovels

velocities

velocities

sonartick

visiontick

sonartick

visiontick

lasertick

lasertick

goal

goal

gotowithavoidance

Figure 16: The ompound DES gotowithavoidane. An example of

using the ompound DES avoidane.

4 THE SOFTWARE FRAMEWORK 18

4 The Software Framework

The oneptual model introdued in previous setion 3, has been put into

pratie developing a software framework whih allows developers/users to

map DES and ompound DES de�nitions to real implementations.

This software arhiteture provides two levels of abstration:

� A Compiler. The DES Compiler, des, generates ode, onsist-

ing on Java sublasses de�ned in the ontext of a hierarhy of Java

lasses, the DESpkg, whih implements DESs, ompound DESs and

assoiated data types { port pakets and input and output parameters

{ based on spei� desription ode for eah partiular roboti system

de�ned through a desription �le { a .des �le {.

� A Hierarhy of Java Classes. The software model provides a hi-

erarhy of Java lasses, the DESpkg, where the onepts of DES and

ompound DES, their default behavior and assoiated data have been

implemented. This hierarhy of lasses provides super lasses to im-

plement simple DESs, ompound DESs, port pakets and input and

output parameters, aording to de�nitions established in the preed-

ing setion 3.

The desription ode aepted by the ompiler des through .des �les

will be the higher level of abstration, and the lasses hierarhy DESpkg

onstitutes the lower level. Thus, in short words, as a �rst step, the de-

velopers/users reate a .des �le desribing DESs and ompound DESs to

ontrol a spei� roboti system, then, apply the des ompiler to obtain

a set of Java lasses whih will embody these DESs and ompound DESs

as sublasses inside the hierarhy of lasses, DESpkg, that implement the

default funtionality for all of them. Finally, the developers/users will have

to �nalize the implementation of suh sublasses ompleting with Java ode

their non default funtionality.

Along the next setions, these two abstration levels will be presented in

more detail using the same example, the obstales avoidane behavior for a

mobile robot, already introdued.

4.1 The DES Compiler

The DES Compiler, des, allows developers/users to de�ne the software

skeleton to ontrol a roboti system. The ompiler aepts a desription

ode, a .des �le, to de�ne suh a skeleton in terms of DESs and ompound

DESs, then, generates a set of Java sublasses, immersed in a hierarhy

of Java lasses { the DESpkg {, mapping that desription ode in Java

shell lasses that, then, must be ompleted by developers/users in order to

ahieve an operative system.

4 THE SOFTWARE FRAMEWORK 19

4.1.1 The des Code

The desription ode aepted by the ompiler, the des ode, will be shown

next through the example already introdued along setion 3, the obstales

avoidane behavior for a mobile robot.

As it was said in setion 3.1.4, all sensors involved in the obstales avoid-

ane behavior share the same DES struture that the generi sensor depited

in �gures 5 and 6. Figure 17, shows the DES desription ode for one of

the sensors, the belt of sonars. Figures 18 and 19 display the des ode for

the other involved sensors, the laser range �nder and the ameras on the

roboti head. Notie that the des ode is the same for all of them, exept

the DES name, whih is sonarsensor for the sonars belt, lasersensor for

the laser range �nder and visionsensor for the ameras, due to they have

in ommon the same DES struture. Also observe how all of them use the

same type of port paket on their di�erent ports, CTik on the input port

tik, and CMap on the output port sense.

des sonarsensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

tik: irular, CTik, 2;

};

output ports

{

sense: CMap;

};

entry state inative

{

transition in tik;

};

state readandsend

{

transition in tik;

};

};

Figure 17: The des desription for the sonar sensor.

Figures 17, 18 and 19 show us how des ode to de�ne a typial DES

looks like. The ode desribes the DES, in terms of input and output ports,

and states. And for eah state, establishes whih input port is ativated

and when state transitions are possible. The framework implements input

ports in three ways: a irular bu�er of port pakets, a FIFO { a queue {

of port pakets, and a growing FIFO of port pakets. For eah input port,

its type, length and port paket must be spei�ed. Notie that one of the

states should be the entry state, where the default automaton enters when

goes to running state, shown in �gure 4. Input and output parameters an

4 THE SOFTWARE FRAMEWORK 20

des lasersensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

tik: irular, CTik, 2;

};

output ports

{

sense: CMap;

};

entry state inative

{

transition in tik;

};

state readandsend

{

transition in tik;

};

};

Figure 18: The des desription for the laser sensor.

des visionsensor(none,none) /* no input parameter,

no output parameter */

{

input ports

{

tik: irular, CTik, 2;

};

output ports

{

sense: CMap;

};

entry state inative

{

transition in tik;

};

state readandsend

{

transition in tik;

};

};

Figure 19: The des desription for the vision sensor.

also be indiated, if any, DESs shown in the mentioned �gures do not use

them. Comments may be added using C standard notation for omments.

Observe that nothing related to the default automaton, its states and

transitions, or related to the ontrol and monitoring ports, andm, appears

in the desription ode. All this is transparently added by the ompiler

to the Java sublasses whih will be generated. Nothing is also delared

4 THE SOFTWARE FRAMEWORK 21

about what happens inside eah state, that is, its inner funtionality, mainly,

when a state hange happens { a state transition {, and when output port

pakets must be emitted through output ports. All this is part of the spei�

funtionality of eah DES, and must be ompleted by the developer/user

after ompilation in the Java sublasses generated by the ompiler.

The des ode for the DES detet orresponding to �gures 7 and 8, is

shown in �gure 20. It does not have input and output parameters either.

Note that its input port sense aepts the same type of port paket, CMap,

whih is issued by the sensors { the sonarsensor, the lasersensor, and the

visionsensor { on their respetive sense output ports.

des detet(none,none) /* no input parameter,

no output parameter*/

{

input ports

{

sense: irular, CMap, 4;

freespae: irular, CFreeSpae, 2;

};

output ports

{

obstales: CObstales;

freespae: CFreeSpae;

};

entry state inative

{

transition in sense;

};

state detet

{

transition in sense;

transition in freespae;

};

};

Figure 20: The des desription for the obstales detetor.

The avoid DES, �gures 9 and 10, has the des ode displayed in �gure

21. As the detet DES, it does not have input and output parameters

either.

Figure 22 shows the des ode for the avoidane ompound DES, shown

in �gure 15. In this desription, DES and/or ompound DES instanes must

be spei�ed. Furthermore, the inner mapping { loal ompound DES on-

netions among inputs and outputs ports { and the outer mapping { input

and output ports of the whole omposition { may be indiated. Finally, the

ombination among DES instanes should be expliitly established. Con-

retely, a onurrent omposition among the three types of sensors has been

spei�ed, and this onurrent omposition is ombined in a disabling way

with the detetor DES and the obstales avoidane DES, see setion 3.1.4.

4 THE SOFTWARE FRAMEWORK 22

des avoid(none,none) /* no input parameter,

no output parameter*/

{

input ports

{

obstales: irular, CObstales, 2;

};

output ports

{

veloities: CVeloities;

};

entry state inative

{

transition in obstales;

};

state detet

{

transition in obstales;

};

};

Figure 21: The des desription for the avoid DES.

In this way, the avoidane behavior works in the worst ase, when only one

of the sensors is operative, and in the best ase when all of them are. If the

obstales detetor DES, or the avoid DES �nishes { either aborted, or with

suess, or unsuessfully {, the behavior will be �nished too. Observe that

nothing related with ontrol and monitoring ports, and the DES Exeutor

is indiated in this ode, beause it is part of the default behavior for eah

ompound DES, and as with DESs, it is also transparently added by the

ompiler to the Java sublasses that are generated.

4.1.2 Compiler Veri�ations

During ompilation the DES ompiler des performs a set of veri�ations

on the ode, and when any of them is not ful�lled, the violation is noti-

�ed and the ompilation is aborted. The following summary resumes these

veri�ations.

On eah DES, it veri�es that:

� There is not a reuse of names for input and output ports and states,

i.e., if any input port, output port or state has been rede�ned.

� Referenes to input ports are orret in state statements, that is, if

there is any input port referene whih has not been de�ned.

� All DESs must have one and only one entry state.

� There is not an idle state, that is, a state without a yle and without

transitions. A yle in a state allows funtionality in this state when

4 THE SOFTWARE FRAMEWORK 23

ompound des avoidane

{

instanes

{

sonarsensor sonarsensor1;

visionsensor visionsensor1;

lasersensor lasersensor1;

detet detet1;

avoid avoid1;

};

inner mapping

{

from sonarsensor1.sense to detet1.sense;

from visionsensor1.sense to detet1.sense;

from lasersensor1.sense to detet1.sense;

from detet1.freespae to detet1.freespae;

from detet1.obstales to avoid1.obstales;

};

outer mapping

{

input sonartik: sonarsensor1.tik;

input visiontik: visionsensor1.tik;

input lasertik: lasersensor1.tik;

output veloities: avoid1.veloities;

output freespae: detet1.freespae;

};

exeute as [(sonarsensor1 |

visionsensor1 |

lasersensor1) # detet1 # avoid1 ℄;

};

Figure 22: The des desription for the avoidane ompound DES.

no input port pakets are reeived. When a yle is de�ned in a state

the developer/user will have a yle funtion to �ll in for this state

in the Java ode generated by the DES Compiler, more preisely, in

the Java lass whih will embody the DES ontaining this state. The

yle feature is not shown in this doument.

On eah ompound DES, it veri�es that:

� There is not a reuse of names for instanes, and input and output

ports, that is, if any instane, or input port or output port has been

rede�ned.

� Instanes de�nitions should be only referred to other de�ned DESs or

ompound DESs.

� There is no any kind of reursive de�nitions of instanes, i.e., it is

not possible to de�ne a ompound DES ontaining an instane or

instanes of itself, or ontaining an instane or instanes of ompound

4 THE SOFTWARE FRAMEWORK 24

DESs inluding, in turn, diret or indiretly, an instane or instanes

of this ompound DESs.

� Referenes in inner and outer mappings are onsistent with instane

de�nitions spei�ed in the ompound DES, i.e., if the referred in-

stanes, input and output ports have been de�ned.

� Inner mapping onnetions are established among ompatible input

and output ports , i.e., transporting the same type of port pakets.

� The exeute statement is referred to instanes de�ned in the ompound

DES, and eah instane should be in the exeute statement one and

only one.

� Output and input parameters math among instanes in onditional

operators in the exeute statement.

Thus, one, a set of developed DESs and ompound DESs is available,

new assemblages and ombinations are easily veri�ed through ompilation.

4.2 The Hierarhy of Java Classes DESpkg: The Software

Bakbone

The Java lasses hierarhy DESpkg is really the software bakbone whih

implements the onepts established in setion 3. For eah roboti system

desribed through a .des �le, the des ompiler generates Java sublasses

in the ontext of this hierarhy of lasses, whih will onstitute its software

skeleton, and will have to be ompleted by the developer/user.

To illustrate how the developer/user should omplete the Java ode gen-

erated by the ompiler, and, at the same time, to outline the DESpkg set

of lasses, we will have a look to part of the ode generated by the des

ompiler for the example whih has already been introdued along previous

setions, the obstales avoidane behavior for a mobile robot, onretely, the

skeleton lasses generated for DES detet and the ompound DES avoid-

ane.

4.2.1 The DES detet

For eah de�ned DES in a .des �le, the des ompiler generates a Java lass.

As a sample, appendix A shows the Java lass generated by the ompiler for

DES detet, orresponding to the des ode depited in �gure 20.

First of all, having a look to the ode, observe that, there are a lot of

pairs of marks as omments, whih may have one out of these three forms:

� either //<->setion<->

and //<->/setion<->,

4 THE SOFTWARE FRAMEWORK 25

� or //<->setion<->state,port<->

and //<->/setion<->state,port<->,

� or //<->setion<->state<->

and //<->/setion<->state<->.

Eah pair of these marks delimits portions of ode whih ould be modi-

�ed by the ompiler in future ompilations, so there, the developer/user does

not have to add any ode, otherwise it will be lost in the next ompilation, if

any. On the ontrary, all ode added by the developer/user situated outside

of any of these pairs of marks will be preserved among des ompilations.

Thus, if the desription ode for a DES is modi�ed and ompiled, the previ-

ous ode already added by the developer is not missed, but preserved, if it

has been added outside of any of these pair of marks. In general, as it will be

seen later, the ompiler adds these kinds of marks to all ode that it reates,

not only to the one orresponding to DESs desriptions, and, the rule is the

same, ode to be preserved among ompilations should be added outside of

these pairs of marks. Furthermore, all these marks should be preserved as

they have been generated by the ompiler, beause any mark alone without

its partner will ause a ompilation error. The ompiler does not protet

all it generates with these marks, it only protets in this way things whih

might hange among ompilations. The ompiler also generates ode whih

remains invariant among ompilations whih is not proteted with marks,

and whih is preserved along suessive ompilations, but only generated the

�rst time, so it should not be modi�ed by the developer/user, beause the

ompiler does not verify in onseutive ompilations if this ode has been

modi�ed or not. To onlude, as rules whih are a must for developers/users

when they are ompleting any lass generated by the ompiler, the next two

rules must be observed:

� Any ode generated by the ompiler must stritly be preserved without

hanges, even any omment, and speially, the mentioned pairs of

marks.

� Any ode added by developers/users must be situated outside of the

portions of ode delimited by the pairs of marks generated by the

ompiler.

Aording to des ode, in �gure 20, orresponding to DES detet, the

ompiler has generated the Java lass CDESdetet whih is a sublass of

theDESpkg lass CDES; see appendix A, where CDESdetet appears as

it was generated �rst. CDESdetet onstitutes the skeleton to implement

the DES detet.

In this framework, the funtionality of eah DES will be oded on the

transitions among the automaton states, inluding the transitions orre-

sponding to the default automaton in �gure 4. The des ode for a DES

4 THE SOFTWARE FRAMEWORK 26

only spei�es for eah one of its states what input ports ould be listened

to, thus, meaning that, only a part of the infrastruture of the DES is on-

struted by the ompiler, its skeleton, the rest must be ompleted by the

developer/user. Spei�ally, the ompiler generates on eah state a funtion

to �ll in, orresponding to eah input port that an be listened to in that

state. Figure 23 displays a sample from the ode generated for DES detet,

appendix A, showing the funtion whih should be ompleted for its state

inative orresponding to an input port paket on its input port sense.

In the �gure the funtion has already been �lled in. Notie how the

transition to state detet must be spei�ed expliitly. Obviously, the added

ode has been inluded outside the marks whih de�ne the body of the

funtion generated by the ompiler, as it was said in previous paragraphs,

just to preserve the ode from future des ode modi�ations.

Figures 24 and 25 show the funtions reated by the ompiler for the state

detet with eah one of the input ports ativated in this state aording to

des ode in �gure 20. In these �gures and �gure 23, the funtions used to

send an output port paket through an output port and to transit to other

state are implemented on the DES super lassCDES, but other several fun-

tions, also used in the ode appearing in the �gures, are supposed to be im-

plemented in some other plae by the developer/user. For example, the fun-

tion memberProessMap(CMap ppCMap, CObstales ppObstales)

whih performs objet detetion from sensory data ontained on the port

paket ppCMap and returns the result already paked on CObstales,

whih is a port paket that may be sent diretly through the output port

obstales. There are no restritions to implement data and funtion mem-

bers in the skeleton lass to omplete the expeted funtionality for a spei�

DES, obviously, always that, ompiler marks are preserved. Observe that

in terms of Java, these skeleton lasses are also Java lasses, so, may be

linked without any restritions with whatever other Java ode, for example,

a driver for a sensor, a math library, et.

Funtions orresponding to transitions among default automaton states

are already implemented in the super lass CDES, but they are imple-

mented as idle funtions { they do nothing {. These funtions an be over-

ridden in the sublass, if neessary. To illustrate this extend, the member

funtion Started() displayed in �gure 26 has been overridden in lass CDES-

detet. Partiularly, this funtion is alled when the automaton gets into

the entry state of the automaton one a running port paket {

r

{ has

been reeived and the transition to the entry state have been ompleted, see

�gure 4. This funtion was intended as the typial plae to write ode to

alloate the neessary resoures to exeute onveniently the user automaton,

and a fail in this alloation will provoke a transition to the fail state of the

default automaton as shown in the �gure, otherwise the automaton remains

in the entry state ontinuing exeution. In any ase, keep in mind that the

deision to override a default automaton transition, whih typially has an

4 THE SOFTWARE FRAMEWORK 27

//<->begintransition<->inative,sense<->

// Funtion pointer definition for transition sense in state inative.

private stati lass Cinativesense implements IFuntionPointer

{

publi void Funtion(Objet oParam)

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CMap ppCMap=(CMap) thisCDESdetet._ppCurrentPaket;

// State inative: here starts your ode

//<->/begintransition<->inative,sense<->

// BEGIN: Added ode

// get output port paket CObstales

CObstales ppObstales=thisCDESdetet._obOutputBox.GetPortPaket(iOP_obstales);

// proess sensory data

ProessMap(ppCMap,ppObstales);

if(ppObstales.IsAnyObstale()) // Is there any obstale?

{

// send out CObstales output port paket

thisCDESdetet._obOutputBox.SendPortPaket(iOP_obstales);

}

else // No obstales

{

// send a CFreeSpae output port paket

thisCDESdetet._obOutputBox.SendPortPaket(iOP_freespae);

}

// transit to detet state

thisCDESdetet._SetState(iS_detet);

// END: Added ode

//<->endtransition<->inative,sense<->

// State inative: here ends your ode

}

}

//<->/endtransition<->inative,sense<->

Figure 23: State inative with a port paket on its input port sense.

idle default implementation, is up to the developer/user depending on the

expeted automaton funtionality, and all its orresponding ode must be

expliitly added by him/her to the lasses generated by the ompiler.

Figure 26 also shows how internal events have been implemented. There,

the internal event fail is just the boolean return value of funtion AlloateRe-

soures(). If it were implemented literally { see setion 3.1{, the automaton

would have to have an extra input port, an extra output port, and an extra

type of port paket de�nition, and besides, eah time the event ours, the

automaton should emit a port paket to signal the event ourrene to itself.

Skeleton lasses for port pakets are also reated by the ompiler, ap-

pendies C.1, C.2 and C.3, respetively, show the lasses generated for port

pakets CMap, CFreeSpae and CObstales, whih are used in DES de-

4 THE SOFTWARE FRAMEWORK 28

//<->begintransition<->detet,sense<->

// Funtion pointer definition for transition sense in state detet.

private stati lass Cdetetsense implements IFuntionPointer

{

publi void Funtion(Objet oParam)

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CMap ppCMap=(CMap) thisCDESdetet._ppCurrentPaket;

// State detet: here starts your ode

//<->/begintransition<->detet,sense<->

// BEGIN: Added ode

// get output port paket CObstales

CObstales ppObstales=thisCDESdetet._obOutputBox.GetPortPaket(iOP_obstales);

// proess sensory data

ProessMap(ppCMap,ppObstales);

if(ppObstales.IsAnyObstale()) // Is there any obstale?

{

// send out the obstales port paket

thisCDESdetet._obOutputBox.SendPortPaket(iOP_obstales);

}

else // No obstales

{

// send a CFreeSpae port paket

thisCDESdetet._obOutputBox.SendPortPaket(iOP_freespae);

}

// END: Added ode

//<->endtransition<->detet,sense<->

// State detet: here ends your ode

}

}

//<->/endtransition<->detet,sense<->

Figure 24: State detet with a port paket on its input port sense.

tet, as they were reated �rst by the ompiler, and note how all of them

are sublasses of the DESpkg lass CPortPaket. They must implement,

at least, a opy method, as these appendies show. But besides, ould also

implement its own funtionality { data and funtion members {, as the fun-

tion member IsAnyObstale() for port paket CObstales whih is alled

on funtions displayed in �gures 23 and 24.

In short, using this software framework, the struture for an automa-

ton de�ning a simple DES must be ompleted at this level of �lling-in the

skeleton, beause it is only at this level where primitives to perform states

transitions, to make deisions based on the port pakets, to send output

port pakets and to ode internal events, are available.

Additionally the ompiler will reate skeleton lasses too, for input and

output parameters, if any. All input and output parameters, as other skele-

ton lasses already introdued, are also sublasses of another lass, ISel-

4 THE SOFTWARE FRAMEWORK 29

//<->begintransition<->detet,freespae<->

// Funtion pointer definition for transition freespae in state detet.

private stati lass Cdetetfreespae implements IFuntionPointer

{

publi void Funtion(Objet oParam)

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CFreeSpae ppCFreeSpae=(CFreeSpae) thisCDESdetet._ppCurrentPaket;

// State detet: here starts your ode

//<->/begintransition<->detet,freespae<->

// BEGIN: Added ode

// transit to inative state

thisCDESdetet._SetState(iS_inative);

// END: Added ode

//<->endtransition<->detet,freespae<->

// State detet: here ends your ode

}

}

//<->/endtransition<->detet,freespae<->

Figure 25: State detet with a port paket on its input port freespae.

proteted void _Started()

{

if(!AlloateResoures()) // Is there anything wrong?

{

// Transit to fail state in the default automaton

_SetFailState();

}

}

Figure 26: CDES lass overridden funtion.

fRepliation, whih is a Java interfae provided by DESpkg. Note that

this feature has not been used in the example shown in this doument.

4.2.2 The Compound DES avoidane

Appendix B shows the Java lass CCoDESavoidane generated �rst by

the ompiler orresponding to the ompound DES avoidane, �gure 15,

from its desription ode in �gure 22. DESpkg implements ompound

DESs through derivation of lass CCompoundDES, as it an be seen in

appendix B. Classes generated by the ompiler orresponding to ompound

DESs are not skeleton lasses, they do not have to be �lled in, they an be

used diretly as they have been reated �rst by the ompiler, but, in any ase,

the ompiler also interleaves pairs of marks indiating where developer/user

ode an not be added, although, these lasses usually do not need to be

ompleted.

5 CONCLUSIONS 30

5 Conlusions

With respet to the goals expressed in setion 2, a software arhiteture has

been devised and built, whih establishes a formal de�nition for a software

omponent for roboti systems, and a formal de�nition for ombinations of

these software omponents in a way that eases its reusability and deploy-

ment.

The software framework was put into pratie and tested through non

real examples, and during evaluation various limitations and ideas arose that

were not though initially, and are ommented next.

5.1 Current Limitations and Future Work

Future work is very related to urrent limitations, and the following points

express some of these limitations and, at the same time, possible trends to

follow in future improvements.

� Automata Mapping. The urrent arhiteture maps port automata

into implementations using two levels of abstration: the des om-

piler and the hierarhy of Java lasses DESpkg. The automaton an

only be ompleted at the last level, DESpkg, beause primitives to

perform state transitions, to make deisions based on the port pak-

ets, and to implement internal events are only available at this level.

Complete automata mapping at �rst level, the ompiler, might be pos-

sible if suh primitives were also available at ompiler level. Automata

mapping at ompiler level ould allow verifying automaton stability,

automaton isolated states, et, at ompilation.

� Software Deployment. Normally to omplete the skeleton of a DES,

it is neessary to link the skeleton lass generated by the ompiler with

some other library or libraries provided by the developer/user, this in-

formation is not present anywhere in the arhiteture at this moment.

Software deployment would only be possible if the software arhite-

ture disposed of suh a information, for example, adding information

about linking and libraries in the desription ode for eah DES, for

eah port paket, for eah input and output parameter, and even, for

eah, ompound DES.

� A Combination Language. One a set of DESs and ompound

DESs has been developed and tested enough, and an be used to on-

strut a omplex roboti system, the fat of having a quite stati and

rigid way of ombining DESs and ompound DESs arises. It looks

neessary to devise a more dynami and omplex way { a ombina-

tion language { to ombine DESs and ompound DESs whih makes

possible to program a roboti system in terms of omponents, that is,

6 ACKNOWLEDGEMENTS 31

in terms of DESs and ompound DESs, and suh a language needs to

keep the formality of proess algebra, beause in this way it is possi-

ble to argue that suh ombinations are also port automata. Besides,

just to enumerate, several points might deserve future onsiderations

in this language:

{ fail reovering: there should be mehanisms for fail detetion

and reovering. At this moment there is no mehanism for fail

reovering, a fail implies a transition to fail state, and then it is

possible to restart exeution or just kill the automaton, see �gure

4.

{ timing information: information about worst working periods

for a DES , its priorities, its working latenies, wath-dog timers,

et, and means to module suh information dynamially.

� Porting to C++. The urrent arhiteture implementation in Java

lasses is quite slow for low level omponents. Porting it to C++

makes sense as we want to apply it on real roboti systems.

� Distributed Framework. At this moment the arhiteture is not

distributed. Roboti systems usually involve multiple omputers, fu-

ture versions should be distributed

� Tools. Di�erent tools ould be quite usable and valuable, for exam-

ple, graphial tools as a graphial DES designer and a graphial DES

omposer, debugging tools as a DES debugger, et.

6 Aknowledgements

This work was performed during a seven-month stay of one of the authors,

Mr. Antonio C. Dom��nguez-Brito, at the Centre for Autonomous Systems,

Royal Institute of Tehnology, Stokholm, Sweden, from Otober 1999 to

April 2000. The authors would like to thank the institutions whih made

this stay possible: the Margit and Folke Perhzon Foundation, the

Centre for Autonomous Systems and the University of Las Palmas

de Gran Canaria, beause without their support this work would never

have been performed.

Referenes

[1℄ M. Andersson, A. Oreb�ak, M. Lindstr�om, and H. I. Christensen. ISR:

an Intelligent Servie Robot. Leture Notes in Arti�ial Intelligene,

Heidelberg, Springer Verlag, 1999. Intelligent Sensor Based Robotis,

h. To appear.

REFERENCES 32

[2℄ R. C. Arkin. Integrating Behavioral, Pereptual and World Knowledge

in Reative Navigation. Robotis and Autonomous Systems, 6:105{122,

1990.

[3℄ R. C. Arkin and T. Balh. AuRA: Priniples and Pratie in Review.

College of Computing, Georgia Institute of Tehnology, Mobile Robot

Laboratory, Atlanta, Georgia 30332, 1997. Report.

[4℄ R. J. Firby. Task Networks for Controlling Continuous Proesses. Se-

ond International Conferene on AI Planning Systems, pp. 49-54, 1994.

[5℄ E. Gat. Integrating Planning and Reating in a Heterogeneous Asyn-

hronous Arhiteture for Controlling Real-World Mobile Robots. Pro-

eedings of the IAAA Conferene, 1992.

[6℄ K. Konolige, K. Myers, A. SaÆotti, and E. Ruspini. The Saphira Ar-

hiteture: a Design for Autonomy. Journal of Experimental and The-

oretial Arti�ial Intelligene, 9:215{235, 1997.

[7℄ S. Fleury, M. Herrb, and R. Chatila. G

en

oM: a Tool for the Spei�ation

and the Implementation of Operating Modules in a Distributed Robot

Arhiteture. IROS 97, Grenoble, Frane. LAAS Report 97244, 1997.

[8℄ P. J. Ramadge and W. M. Wonham. The Control of Disrete Event

Systems. Proeedings of the IEEE, 77(1):81{97, 1989.

[9℄ M. Steenstrup, M. A. Arbib, and E. G. Manes. Port Automata and

the Algebra of Conurrent Proesses. Journal of Computer and System

Sienes, 27:29{50, 1983.

[10℄ D. M. Lyons and M. A. Arbib. A Formal Model of Computation for

Sensory-Based Robotis. IEEE Transations on Robotis and Automa-

tion, 5(3):280{293, June 1989.

[11℄ D. M. Lyons. A Proess-Based Approah to Task Representation. IEEE

Proeedings Robotis and Automation, pages 2142{2147, 1990.

[12℄ J. Ko�sek�a. Supervisory Control Theory of Autonomous Mobile Agents.

PhD thesis, University of Pennsylvania, GRASP Laboratory, February

1996.

[13℄ J. Ko�sek�a, H. I. Christensen, and R. Bajsy. Experiments in Behavior

Composition. Robotis and Autonomous Systems, 19:287{298, Marh

1997.

[14℄ D. B. Stewart. Real-Time Software Design and Analysis of Reon-

�gurable Multi-Sensor Based Systems. PhD thesis, Carnegie Mellon

University, Dept. Eletrial and Computing Engineering, Pittsburgh,

1994.

A THE DES DETECT: THE CDESDETECT CLASS 33

[15℄ D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of Dynamially

Reon�gurable Real-Time Software Using Port-Based Objets. IEEE

Transations on Software Engineering, 23(12):759{776, Deember 1997.

[16℄ D.B. Stewart and P. Khosla. Chimera 3.1: the Real-Time Operating

System for Reon�gurable Sensor-Based Control Systems. Advaned

Manipulators Laboratory, The Robotis Institute and Department of

Eletrial and Computer Engineering, Carnegie Mellon University, Jan-

uary 1993.

[17℄ D.B. Stewart and P. Khosla. The Chimera Methodology: Designing

Dynamially Reon�gurable and Reusable Real-Time Software using

Port-Based Objets. International Journal of Software Engineering and

Knowledge Engineering, 6(2):249{277, June 1996.

A The DES detet: the CDESdetet lass

//<->header<->

/*

* File: CDESdetet.java

* Compiled by: DES Compiler v0.1 (des)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pakage DESpkg;

//<->definition<->

publi lass CDESdetet extends CDES {

private stati CInstanesNaming _inanaming=new CInstanesNaming("CDESdetet");

//<->/definition<->

//<->inputportsids<->

// User defined input ports

publi stati final int iIP_sense=1;

publi stati final int iIP_freespae=2;

//<->/inputportsids<->

//<->inputportsonfigs<->

// Input ports onfiguration data

publi stati final CInputBox.CInputPortConfiguration[℄ aipIP_PORTS=

{

// iIP_CONTROL

ipIP_CONTROL,

// iIP_sense

new CInputBox.CInputPortConfiguration("DESpkg.CCirularPort",

"DESpkg.CMap",

4),

// iIP_freespae

new CInputBox.CInputPortConfiguration("DESpkg.CCirularPort",

"DESpkg.CFreeSpae",

2)

};

//<->/inputportsonfigs<->

//<->outputportsids<->

A THE DES DETECT: THE CDESDETECT CLASS 34

// User defined output ports

publi stati final int iOP_obstales=1;

publi stati final int iOP_freespae=2;

//<->/outputportsids<->

//<->outputportsonfigs<->

// Output ports onfiguration data

publi stati final String[℄ asOP_PORTS=

{

sOP_MONITORING, // iOP_MONITORING

"DESpkg.CObstales", // iOP_obstales

"DESpkg.CFreeSpae" // iOP_freespae

};

//<->/outputportsonfigs<->

//<->statesids<->

// User defined states Ids

publi stati final int iS_inative=5;

publi stati final int iS_detet=6;

//<->/statesids<->

//<->statesnames<->

// States names

private stati final String[℄ _asstateNames=

{

asStateNames[iS_IDLE℄,

asStateNames[iS_RUNNING℄,

asStateNames[iS_SUCCESS℄,

asStateNames[iS_ABORT℄,

asStateNames[iS_FAIL℄,

"inative",

"detet"

};

//<->/statesnames<->

//<->statesmasks<->

// States masks

private stati final boolean[℄[℄ _aabostateMasks=

{

// iS_IDLE

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespae

},

// iS_RUNNING (not neessary, but it must be a position for this state)

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespae

},

// iS_SUCCESS

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespae

},

// iS_ABORT

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespae

A THE DES DETECT: THE CDESDETECT CLASS 35

},

// iS_FAIL

{

true, // iIP_CONTROL

false, // iIP_sense

false // iIP_freespae

},

// iS_inative

{

true, // iIP_CONTROL

true, // iIP_sense

false // iIP_freespae

},

// iS_detet

{

true, // iIP_CONTROL

true, // iIP_sense

true // iIP_freespae

}

};

//<->/statesmasks<->

//<->statestransitionsdefs<->

//<->begintransition<->inative,sense<->

// Funtion pointer definition for transition sense in state inative.

private stati lass Cinativesense implements IFuntionPointer

{

publi void Funtion(Objet oParam)

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CMap ppCMap=(CMap) thisCDESdetet._ppCurrentPaket;

// State inative: here starts your ode

//<->/begintransition<->inative,sense<->

//<->endtransition<->inative,sense<->

// State inative: here ends your ode

}

}

//<->/endtransition<->inative,sense<->

//<->begintransition<->detet,sense<->

// Funtion pointer definition for transition sense in state detet.

private stati lass Cdetetsense implements IFuntionPointer

{

publi void Funtion(Objet oParam)

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CMap ppCMap=(CMap) thisCDESdetet._ppCurrentPaket;

// State detet: here starts your ode

//<->/begintransition<->detet,sense<->

//<->endtransition<->detet,sense<->

// State detet: here ends your ode

}

}

//<->/endtransition<->detet,sense<->

//<->begintransition<->detet,freespae<->

// Funtion pointer definition for transition freespae in state detet.

private stati lass Cdetetfreespae implements IFuntionPointer

{

publi void Funtion(Objet oParam)

A THE DES DETECT: THE CDESDETECT CLASS 36

{

CDESdetet thisCDESdetet=(CDESdetet) oParam;

CFreeSpae ppCFreeSpae=(CFreeSpae) thisCDESdetet._ppCurrentPaket;

// State detet: here starts your ode

//<->/begintransition<->detet,freespae<->

//<->endtransition<->detet,freespae<->

// State detet: here ends your ode

}

}

//<->/endtransition<->detet,freespae<->

//<->/statestransitionsdefs<->

//<->statestransitionsmatrix<->

// Matrix of transitions (funtion pointers) for eah state

private final IFuntionPointer[℄[℄ _aafpstateCallbaks=

{

// iS_IDLE

{

new CDES.CIdleControlPaket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespae

},

// iS_RUNNING (not neessary, but it must be a position for this state

{

new CDES.CEntryControlPaket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespae

},

// iS_SUCCESS

{

new CDES.CSuessAbortFailControlPaket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespae

},

// iS_ABORT

{

new CDES.CSuessAbortFailControlPaket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespae

},

// iS_FAIL

{

new CDES.CSuessAbortFailControlPaket(), // iIP_CONTROL

null, // iIP_sense

null // iIP_freespae

},

// iS_inative

{

new CDES.CEntryControlPaket(), // iIP_CONTROL

new Cinativesense(), // iIP_sense

null // iIP_freespae

},

// iS_detet

{

new CDES.CEntryControlPaket(), // iIP_CONTROL

new Cdetetsense(), // iIP_sense

new Cdetetfreespae() // iIP_freespae

}

};

//<->/statestransitionsmatrix<->

A THE DES DETECT: THE CDESDETECT CLASS 37

//<->statesylesdefs<->

// None

//<->/statesylesdefs<->

//<->statesylesvetor<->

// Nothing (no yles)

//<->/statesylesvetor<->

// BEGIN: Loal variable spae (advisable a private modifier for them)

// END: Loal variable spae

//<->onstrutor<->

publi CDESdetet()

//<->/onstrutor<->

{

_sInstaneName=_inanaming.NewName();

_sName=_sInstaneName;

_ibInputBox=new CInputBox(aipIP_PORTS);

_obOutputBox=new COutputBox(asOP_PORTS);

//<->entrystate<->

_iEntryState=iS_inative;

//<->/entrystate<->

}

publi boolean IsInvalid() { return false; }

publi String GetStateName(int iState)

{

if(iState==iS_DEAD) return "Dead";

if((iState<0) || (iState>=_asstateNames.length)) return null;

return _asstateNames[iState℄;

}

publi COutputBox.CInputPortRef GetInputPortRef(int iInputPort)

{

if((iInputPort<0) || (iInputPort>=aipIP_PORTS.length)) return null;

return new COutputBox.CInputPortRef(_ibInputBox,iInputPort);

}

publi Objet Connet(int iPort, COutputBox.CInputPortRef iprInputPortRef)

throws CPortPaketMismathExeption

{ return _obOutputBox.Connet(iPort,iprInputPortRef); }

publi boolean Disonnet(int iPort,Objet oInputDesriptor)

{ return _obOutputBox.Disonnet(iPort,oInputDesriptor); }

publi void DisonnetAll() { _obOutputBox.DisonnetAll(); }

publi void run()

{

if(IsInvalid()) return;

_Launhed();

_SetState(iS_IDLE);

_ppCurrentPaket=null;

_iCurrentInputPort=-1;

B THE COMPOUND DES AVOIDANCE 38

while(_iCurrentState!=iS_DEAD)

{

//<->runningkernel<->

_waitAndTransition();

//<->/runningkernel<->

// NOTE: Just release the pu (neessary with green threads)

try { Thread.sleep(0); } // Release the pu (Green threads)

ath(InterruptedExeption ieExeption) { /* Nothing */ }

}

}

private void _waitAndTransition()

{

try

{

_iCurrentInputPort=_ibInputBox.WaitForSomething();

_ppCurrentPaket=_ibInputBox.GetPortPaket(_iCurrentInputPort);

if(_aafpstateCallbaks[_iCurrentState℄[_iCurrentInputPort℄!=null)

_aafpstateCallbaks[_iCurrentState℄[_iCurrentInputPort℄.Funtion(this);

}

ath(InterruptedExeption ieExeption) { _SetDeadState(); }

}

proteted boolean[℄ _GetStateMask(int iState) { return _aabostateMasks[iState℄; }

//<->inputparam<->

//No input param

//<->/inputparam<->

}

B The Compound DES avoidane

//<->header<->

/*

* File: CCoDESavoidane.java

* Compiled by: DES Compiler v0.1 (des)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pakage DESpkg;

//<->definition<->

publi lass CCoDESavoidane extends CCompoundDES {

private stati CInstanesNaming _inanaming=new CInstanesNaming("CCoDESavoidane");

//<->/definition<->

//<->instanesids<->

// Ids for DES instanes

publi stati final int iINSTANCES=5;

publi stati final int iINS_sonarsensor1=0;

publi stati final int iINS_visionsensor1=1;

publi stati final int iINS_lasersensor1=2;

publi stati final int iINS_detet1=3;

publi stati final int iINS_avoid1=4;

//<->/instanesids<->

//<->innermappinglength<->

B THE COMPOUND DES AVOIDANCE 39

// Inner mapping

publi stati final int iINNER_MAPPING_REFS=5;

//<->/innermappinglength<->

//<->inputportsids<->

// Outer mapping: input ports

publi stati final int iINPUT_PORTS=3;

publi stati final int iIP_sonartik=1;

publi stati final int iIP_visiontik=2;

publi stati final int iIP_lasertik=3;

//<->/inputportsids<->

//<->outputportsids<->

// Outer mapping: output ports

publi stati final int iOUTPUT_PORTS=2;

publi stati final int iOP_veloities=1;

publi stati final int iOP_freespae=2;

//<->/outputportsids<->

//<->onstrutor<->

publi CCoDESavoidane()

//<->/onstrutor<->

{

_sInstaneName=_inanaming.NewName();

//<->instanesreation<->

//DES instanes reation

_adesInstanes=new CDES[iINSTANCES℄;

_adesInstanes[iINS_sonarsensor1℄=new CDESsonarsensor();

_adesInstanes[iINS_visionsensor1℄=new CDESvisionsensor();

_adesInstanes[iINS_lasersensor1℄=new CDESlasersensor();

_adesInstanes[iINS_detet1℄=new CDESdetet();

_adesInstanes[iINS_avoid1℄=new CDESavoid();

//<->/instanesreation<->

//<->innermappingreation<->

// Inner mapping reation

_amrSourePorts=new CMappingRef[iINNER_MAPPING_REFS℄;

_amrDestinationPorts=new CMappingRef[iINNER_MAPPING_REFS℄;

_amrSourePorts[0℄=new CMappingRef(iINS_sonarsensor1,CDESsonarsensor.iOP_sense);

_amrDestinationPorts[0℄=new CMappingRef(iINS_detet1,CDESdetet.iIP_sense);

_amrSourePorts[1℄=new CMappingRef(iINS_visionsensor1,CDESvisionsensor.iOP_sense);

_amrDestinationPorts[1℄=new CMappingRef(iINS_detet1,CDESdetet.iIP_sense);

_amrSourePorts[2℄=new CMappingRef(iINS_lasersensor1,CDESlasersensor.iOP_sense);

_amrDestinationPorts[2℄=new CMappingRef(iINS_detet1,CDESdetet.iIP_sense);

_amrSourePorts[3℄=new CMappingRef(iINS_detet1,CDESdetet.iOP_freespae);

_amrDestinationPorts[3℄=new CMappingRef(iINS_detet1,CDESdetet.iIP_freespae);

_amrSourePorts[4℄=new CMappingRef(iINS_detet1,CDESdetet.iOP_obstales);

_amrDestinationPorts[4℄=new CMappingRef(iINS_avoid1,CDESavoid.iIP_obstales);

//<->/innermappingreation<->

//<->inputportsreation<->

// Outer mapping reation: input ports

_amrInputPorts=new CMappingRef[iINPUT_PORTS℄;

_amrInputPorts[iIP_sonartik-1℄=

new CMappingRef(iINS_sonarsensor1,CDESsonarsensor.iIP_tik);

_amrInputPorts[iIP_visiontik-1℄=

new CMappingRef(iINS_visionsensor1,CDESvisionsensor.iIP_tik);

_amrInputPorts[iIP_lasertik-1℄=

new CMappingRef(iINS_lasersensor1,CDESlasersensor.iIP_tik);

//<->/inputportsreation<->

C THE PORT PACKETS 40

//<->outputportsreation<->

// Outer mapping reation: output ports

_amrOutputPorts=new CMappingRef[iOUTPUT_PORTS℄;

_amrOutputPorts[iOP_veloities-1℄=new CMappingRef(iINS_avoid1,CDESavoid.iOP_veloities);

_amrOutputPorts[iOP_freespae-1℄=new CMappingRef(iINS_detet1,CDESdetet.iOP_freespae);

//<->/outputportsreation<->

//<->exeutiontreereation<->

// Exeution tree reation

CExeTree.CNode nTree0=CExeTree.CreateLeafNode(iINS_sonarsensor1);

CExeTree.CNode nTree1=CExeTree.CreateLeafNode(iINS_visionsensor1);

CExeTree.CNode nTree2=CExeTree.CreateOpNode(CExeTree.iCONCURRENT,nTree0,nTree1);

CExeTree.CNode nTree3=CExeTree.CreateLeafNode(iINS_lasersensor1);

CExeTree.CNode nTree4=CExeTree.CreateOpNode(CExeTree.iCONCURRENT,nTree2,nTree3);

CExeTree.CNode nTree5=CExeTree.CreateLeafNode(iINS_detet1);

CExeTree.CNode nTree6=CExeTree.CreateOpNode(CExeTree.iDISABLING,nTree4,nTree5);

CExeTree.CNode nTree7=CExeTree.CreateLeafNode(iINS_avoid1);

CExeTree.CNode nTree8=CExeTree.CreateOpNode(CExeTree.iDISABLING,nTree6,nTree7);

_nExeTree=nTree8;

//<->/exeutiontreereation<->

}

}

C The Port Pakets

C.1 The CMap lass

//<->header<->

/*

* File: CMap.java

* Compiled by: DES Compiler v0.1 (des)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pakage DESpkg;

//<->definition<->

publi lass CMap extends CPortPaket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi boolean Copy(CPortPaket ppPaket)

{

if(ppPaket==null) return false;

//<->funtionast<->

CMap ppCMap=(CMap) ppPaket;

//<->/funtionast<->

// Your opy ode starts here

// Your opy ode ends here

return true;

}

}

C THE PORT PACKETS 41

C.2 The CFreeSpae lass

//<->header<->

/*

* File: CFreeSpae.java

* Compiled by: DES Compiler v0.1 (des)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pakage DESpkg;

//<->definition<->

publi lass CFreeSpae extends CPortPaket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi boolean Copy(CPortPaket ppPaket)

{

if(ppPaket==null) return false;

//<->funtionast<->

CFreeSpae ppCFreeSpae=(CFreeSpae) ppPaket;

//<->/funtionast<->

// Your opy ode starts here

// Your opy ode ends here

return true;

}

}

C.3 The CObstales lass

//<->header<->

/*

* File: CObstales.java

* Compiled by: DES Compiler v0.1 (des)

* Date: Tue 16 May 2000 13:35:53

*/

//<->/header<->

pakage DESpkg;

//<->definition<->

publi lass CObstales extends CPortPaket

//<->/definition<->

{

// The Copy method is mandatory, you must implement it. The rest it is up to you.

publi boolean Copy(CPortPaket ppPaket)

{

if(ppPaket==null) return false;

//<->funtionast<->

CObstales ppCObstales=(CObstales) ppPaket;

//<->/funtionast<->

// Your opy ode starts here

// Your opy ode ends here

return true;

}

C THE PORT PACKETS 42

}

