
Adaptive Control in Multi-Task Mobile

Robotic Applications

Daniel Hernández Sosa
IUSIANI (ULPGC),

Edificio del Parque Tecnológico,
Campus de Tafira,
Las Palmas G.C.

(dhernandez@iusiani.ulpgc.es)

Jorge Cabrera Gámez
(jcabrera@dis.ulpgc.es)

Antonio Carlos Domı́nguez Brito
(acdbrito@dis.ulpgc.es)

Cayetano Guerra Artal
(cguerra@iusiani.ulpgc.es)

March 9, 2004

Abstract

Mobile robotic systems are often conditioned by limitations in available
resources. Normally these systems try to offer a robust behaviour while
pursuing several goals simultaneously, which leads to the execution of sev-
eral tasks competing for CPU time and other shared hardware resources
as sensors and actuators. If not properly managed, these limitations may
provoke poor performance and, even worse, blocking of the entire system
operation. In this work we propose a series of control policies for dynamic
adaptation that have been integrated on a modular architecture. We also
present two demonstrators to evaluate working implementations on real
world applications.

1



Introduction

Mobile robotic systems are often affected by shortage of resources. This prob-
lems is aggravated by the configuration of these systems in tactical multi-
objective designs that require the robust execution of multiple tasks in parallel
[10]. In such an environment, with multiple - normally periodic - components
executing concurrently, interactions among them can lead to low performance
situations [3] [9]. If the problem receives no attention, the whole system reac-
tivity/security may be threatened.

In a hard real-time system a worst-case off-line analysis can guarantee a
correct execution. However, for soft real-time systems this is not a good solu-
tion, as available resources often become wasted. As a consequence, alternative
on-line dynamic control approximations try to modify the system behavior dur-
ing execution time. Some adaptive strategies that have been applied in this
area include anytime algorithms [4], imprecise computation [11], design-to-time
techniques [5] or deliberative scheduling [1].

Our proposal offers a set of integrated resources and policies aimed at ob-
taining run-time system adaptability, including a graceful degradation when
there are not enough available resources and a maximum performance status
recovery whenever possible. Additional objectives are reactivity, stability and
coordination to avoid system imbalances.

This paper is organized as follows: first, the system architecture is pre-
sented, including both structural and functional organization. Then the adap-
tation capabilities proposed are described and, finally, the experiments and the
conclusions.

1 The System Architecture

Integrated design plays a very important role in our system. The complexity
of software development for robotic system has been addressed by means of the
use of special purpose languages and architectures [6] [2]. Often, adaptation
problems are considered after the system architecture has been completely de-
fined. We consider that this approximation is not the most convenient, as it can
reduce the flexibility and compromise the performance of the resulting control
solutions.

1.1 Structural organization

The system architecture builds up from the interconnection of general purpose
BU-TD-COM modules (see figure 1). Each module contains three intercon-
nected units: Bottom-Up or BU, Top-Down or TD, and Communication or
COM. The BU unit transforms the received data by means of processing algo-
rithms, generating results to be distributed to consumer modules. The TD unit
supervises the module operation, generating control orders to modify its behav-
ior. The COM unit is in charge of data distribution from producer modules to
consumers.

The main features of this structural organization include a clear functional
separation between processing (BU), control (TD) and communication (COM),

2



Figure 1: Generic BU-TD-COM module

a high level of autonomy, and a system-wide homogeneous interface among
modules.

1.2 Functional organization

From a functional point of view, the system defines five types of functional
modules. These basic objects are implemented by the BU-TD-COM modules.

• Sensors.

• Diagnostics.

• Actions.

• Actuators.

• Supervisors.

These basic objects are combined in tasks which, in turn, are organized in
states to complete high-level functionality. Among basic system objects, Sensors
provide source data for other modules abstracting physical sensors. Diagnostics
objects encapsulate algorithms for data transformation, taking inputs from ei-
ther sensors or other diagnostics. Action objects are in charge of the control of
the execution, analyzing the results from diagnostics to generate control com-
mands. Actuators abstract physical effectors, translating commands into real
actions. Finally, Supervisors play the role of high level controllers in the system.

All system modules follow internally the same state graph (see figure 2). A
module transits from IDLE state to READY state when assigned to a specific
functional module. The module remains in this state until commanded for
execution, transiting then to RUNNING state. From this point, the module can
finish correctly its execution returning to READY state, interrupt temporally

3



the execution on high level command entering SUSPENDED state, or reach
ERROR state after the detection of an running error condition. This common
structure allows for a clear code organization, simplifying implementation.

Figure 2: Module state graph

The tasks combine functional modules to form closed perception-action loops.
A typical configuration is the connection of a sensor module to a diagnostics
module for processing raw sensor data. The results are delivered to an action
module that analyzes them to generate control commands directed to an ac-
tuator module. This module is attached to a physical effector to complete the
control loop.

The states represent different groups of tasks that must be executed simul-
taneously. A set of transitions control the evolution of the system through the
defined states. A more detailed description of the functional objects can be
found in [8].

In this work we will concentrate on periodic tasks, that is, repetitive pro-
cessing loops that must verify a frequency of operation given by the system
designer.

2 Adaptive Control

The dynamic adaptation of the tasks inside the system is designed around two
controllable variables: frequency of operation and quality level (see figure 3).
On the frequency axis, a supervisor can modify the period associated to any
of the tasks under its control, for example, increasing their values to face CPU
saturation. On the quality axis, the supervisors can command lower qualities
(sensor resolution, accuracy of computations, exhaustiveness, etc.) to reduce
CPU load and latencies at the cost of increasing uncertainty or decreasing results
quality. Due to the reduction of performance associated to frequency or quality
degradation, the system always tries to restore the nominal parameter values as
soon as resource limitations disappear.

The system uses several monitoring variables to detect when adaptive control
actions are needed. These signals include both internal or direct processing
results, and external stimuli. Some examples are the following:

4



Figure 3: Quality and frequency control

• Internal.

– Obstacle density in navigation applications.

– Target speed in tracking applications.

• External.

– Timeouts.

– System load.

– Battery level.

Each signal is monitored by a control loop that compares its value with
reference levels. Control aspects are associated naturally to TD units inside
each module, at low level, and supervisors, at high level. The early separation
of control, processing and communication areas facilitates the implementation,
promoting and preserving modularity.

Several control policies have been designed to organize system adaptation.
Their objectives include:

• Avoid an unbalanced system degradation/promotion.

• Reduce settling times.

• Stability.

The control sequence begins with the activation of one or more control loops
detecting out-of-range variables. Whenever possible, control actions are trig-
gered hierarchically, local actions or task-scope first, state-scope later and fi-
nally, if problems persist system scope actions are issued. The TD units are in
charge of local scope, while supervisors operate at state and system levels.

5



2.1 Computational adaptation

We will describe now in more detail two adaptive control strategies for control-
ling timeouts and system load.

2.1.1 Timeout control

Timeouts control adapts, on a hierarchical basis, the computational demands of
the system in order to guarantee the specified frequencies of operation. Firstly,
period violations are detected locally inside the time-pressured task. The task
supervisor selects a candidate module for degradation and sends the correspond-
ing order. To avoid systems unbalance, however, local control actions are limited
to a scope defined by two homogeneity thresholds. If local adaptation resources
are not enough, the supervisor notifies the problem to upper state level. If state
supervisor also reaches its limit, the timeout situation is raised to system level
supervisor, where global actions can be executed.

2.1.2 CPU load control

The load control loop operates only at global level. The system load is estimated
and compared with a certain reference level fixed externally. Promotion and
degradation actions are generated accordingly to maintain the desired load level.

Candidate selection for targeting control actions plays an important role
on adaptation performance. In general, an agreement between reactivity and
stability must be reached. The most intense reactions are obtained when one
or more of the following conditions are met:

• High frequency tasks.

• CPU demanding modules.

• Multiple destination modules.

• High-resolution sensor modules.

The supervisors evaluate these parameters to select target tasks for adap-
tation, either in local state scope or in system global scope. The TD units, in
turn, evaluate the parameters to select target modules inside the task (see [8]
for a more complete description).

3 Experiments

We have implemented two demonstrators to illustrate the operation of the adap-
tation mechanisms on real-world applications: a visual tracking system and a
mobile robotic application.

3.1 Tracking

The first application consists in a correlation-based tracking system for a robotic
head. A USB web-cam (3Com HomeConnect) has been mounted on a pan-tilt
capable neck (DirectedPerception PTU) controlled via serial port. The figure 4
shows the hardware configuration used for this demonstrator.

6



Figure 4: Robotic head

The goal of the application is to detect first, and keep centered on the image
later, a certain pattern. A correlation-based measure [7] is used to localize the
target on the image. The application is organized in three states: “Tracking”,
“Active Searching” and “Passive Searching”. When the pattern is localized the
system executes in the tracking state trying to keep the target centered on the
image. If the target is lost, the system transits to the active searching state,
where a scanning of the area in front of the head is performed. On target
recovery the system returns to the tracking state. Otherwise the execution
transits to the passive searching state, where the system remains static until
the target is detected again. Several secondary tasks have been added to some
states to perform additional calculations (image feature extraction). Figure 5
shows the states, transitions and tasks configuring this application.

Within this system many alternatives for computational adaptation are pos-
sible. For the main correlation task:

• Multiple resolution sensor.

• Correlation pattern size.

• Searching area

Figure 6 illustrates how quality level commands directed to the correlation
task affect global system load. In this case, it is the sensor resolution that has
been modified.

For the secondary tasks, variable resolution and frequency of operation al-
low for the modification of computational demands. In case of saturation the
adaptation policies try to degrade first secondary tasks and later correlation
task. When recovering, the higher priority correlation task promotes first and
secondary tasks later.

7



Figure 5: Tracking tasks and states

Figure 7 illustrates the variations on system load as the execution evolves
through the application states.

3.2 Mobile robot

The second demonstrator mounts the mechanical head described on the previous
application on a mobile robot (Pioneer). A notebook has been added for running
the application, being connected via USB and serial ports to the head and the
robot. Figure 8 shows the resulting hardware platform.

A tactic multi-purpose application has been designed combining two main
objectives: line following and object detection. The robot must follow, as tight
as possible, a trajectory defined by a line traced on the floor. At the same time,
the robot must look at both sides of the route trying to detect some colored
balls. The first task is considered to have a higher priority than the second one,
so the adaptation strategy operates modifying the frequency of execution and
quality level of the object detection task.

On straight-line segments both tasks can be performed alternatively at a pre-
defined frequency. On curved segments, however, the risk of separation from or
loosing the track increases. To avoid this, the movement amplitude and activa-
tion period of the object detection task is modulated according to the curvature
of the line that the robot must follow. The modification of the scanning ampli-
tude can be considered a quality-based adaptive control, as processing times are
shortened at the cost of reducing the probability of finding color objects. The
modification of the period, however, corresponds to a frequency-based adaptive
control.

The figure 9 represents the executions of the secondary task along the tra-
jectory. On curved segments, both frequency and amplitude of scanning take
lower values. On straight segments both parameters are increased.

8



Figure 6: Quality control on correlation

4 Conclusions

The rational use of shared resources becomes a crucial factor in robotic systems.
We have presented here a set of mechanisms to endow adaptation control to
robotic applications using a generic module based architecture. The system
degrades its performance level to accommodate resource shortage, and recovers
whenever possible. The common internal concept benefits system designers in
terms of modular code organization and facilitates the programming of control
policies.

The adaptive control resources have been considered from the beginning
the system design to avoid architecture-dependant limitations. This integrated
development of architecture and adaptation mechanisms becomes a factor of
main importance in the success of the control scheme.

Two demonstrators illustrate the effectiveness of the proposed mechanisms
on real-world applications.

References

[1] M. Boddy and T. Dean, Decision-theoretic deliberation scheduling for prob-
lem solving in time-constrained environments, Artificial Intelligence 67
(1994), no. 2, 245–286.

[2] Eve Coste-Manière and Reid Simmons, Architecture, the backbone of robotic
systems, Proceedings of the IEEE International Conference on Robotics &
Automation (San Francisco, CA, USA), Abril 2000, pp. 67–72.

[3] B. D’Ambrosio, Resource bounded-agents in an uncertain world, Proceed-
ings of the Workshop on Real-Time Artificial Intelligence Problems (De-
troit, MI, USA), Aug. 1989.

9



Figure 7: Load and states

[4] T. Dean and M. Boddy, An analysis of time-dependent planning, Proceed-
ings of the 7th National Conference on Artificial Intelligence, AAAI (St.
Paul, MN, USA), 1988, pp. 49–54.

[5] Alan J. Garvey and Victor Lesser, Design-to-time real-time scheduling,
IEEE Transactions on Systems, Man and Cybernetics 23 (1993), no. 6,
1491–1502.

[6] E. Gat, On three-layer architectures, Artificial Intelligence and Mobile
Robots. MIT/AAAI (1997), 195–210.

[7] Cayetano Guerra-Artal, Contribuciones al seguimiento visual precategórico,
Ph.D. thesis, Universidad de Las Palmas de Gran Canaria, 2002.

[8] D. Hernández-Sosa, Adaptación computacional en sistemas percepto-
efectores. Propuesta de arquitectura y poĺıticas de control, Ph.D. thesis,
Universidad de Las Palmas de Gran Canaria, 2003.

[9] E. J. Horvitz, G. F. Cooper, and D. E. Heckerman, Reflection and ac-
tion under scarce resources: Theoretical principles and empirical study,
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (IJCAI-89) (Detroit, MI, USA), 1989, pp. 1121–1127.

[10] Stephen D. Jones, Robust task achievement, Ph.D. thesis, Institut National
Polytechnique de Grenoble, 1997.

[11] J. Liu, K. Lin, R. Bettati, D. Hull, and A. Yu, Use of imprecise compu-
tation to enhance dependability of real-time systems, pp. 157–182, Kluwer
Academic Publishers, 1994.

10



Figure 8: Mobile robot

Figure 9: Secondary task execution

11


