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Abstract. The paper shows the application of the multidimensional scaling to
discover the intrinsic dimensionality of the substitution matrices. These matrices
are used in Bioinformatics to compare amino acids in the alignment procedures.
However, the methodology can be used in other applications to discover the in-
trinsic dimensionality of a wide class of symmetrical matrices. The discovery of
the intrinsic dimensionality of substitutions matrices is a data processing problem
with applications in chemical evolution. The problem is related with the num-
ber of relevant physical, chemical and structural characteristic involved in these
matrices. Many studies have dealt with the identification of relevant character-
istic sets for these matrices, but few have concerned with establishing an upper
bound of their cardinality. The methodology of multidimensional scaling is used
to map the substitution matrix information in a virtual low dimensional space.
The relationship between the quality of this process and the dimensionality of the
mapping provides clues about the number of characteristics which better repre-
sents the matrix. To avoid the local minima problem, a genetic algorithm is used
to minimize the objective function of the multidimensional scaling procedure.
The main conclusion is that the number of effective characteristics involved in
substitution matrices is small.

1 Introduction

The molecular evolution predicts that variations in spices are highly related to the
physical-chemical factors involved in protein function and folding.The modelling of
evolution at protein level is usually accomplished by using matrices of mutation prob-
ability among amino acids. These collect the co-occurrence probability of each amino
acid pair in homologous sequences, which have some defined evolutionary distance or
rate of conserved residues. Therefore, substitution rates at molecular level and physical-
chemical properties seem to be of central interest in biological evolution. In special, the
knowledge about the effects of amino acid properties in the substitution probability can
be of great interest in order to understand the evolution mechanisms.

In practical computational tasks, substitution matrices are introduced to score the
substitution of amino acid residues in sequence alignment procedures to reveal homolo-
gies. Different substitution matrices can be constructed according with the selection of
the set of representative sequences in a biological framework. Eg. PAM matrices[1] are
constructed from sequences with evolutionary relations, while BLOSUM matrices[2]
are constructed from block sequences that have a similarity ratio.



In Data Mining, the problems concerning with dimensionality reduction or dimen-
sionality discovery must deal with the concept of intrinsic dimensionality [3] of their
data. In intrinsic dimensionality research, most approaches [4, 5] deal with high dimen-
sional databases and try to reduce the data into a few dimensions by applying meth-
ods of multidimensional scaling while the precision in database continues to be high
[6]. Intrinsic dimensionality of substitution matrices can be obtained by using two ap-
proaches: characteristic independent or dependent. Characteristics dependent analysis
are weak techniques because they involve some problems. The main one is related with
the choice of the property set. To avoid undesired exclusions, its cardinality must be
high. There are some exhaustive compiled sets of amino acid characteristics which car-
dinality is about several hundreds; one of the best is the AAindex database[7]. The
second problem is related to how obtain the intrinsic dimensionality from these mas-
sive sets. Feature selection procedures as Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) are the basic approaches. These procedures
provide results as linear combinations of the characteristics contained in the original
set. PCA is optimal in applications where the second order statistical parameters – as
in gaussian case– define the probabilistic distribution. In the PCA procedure the results
are eigenvalues and eigenvectors, that are relevant properties of the characteristics set.
A set of orthogonal linear combination of amino acid characteristics for clustering has
been obtained [8] from the eigenvectors of the PCA selection procedure from a wide
characteristic set. They are significative among the characteristic set itself, but there are
doubts about if they are significative in the relationship with the substitution matrices.

The main motivation of this paper is that the discovery of the intrinsic dimension-
ality of substitution matrices provides an upper bound about the cardinality of the set
of relevant properties. Also, the main hypothesis is that the discovery can be directly
obtained –independently of the set of properties– from the substitution data itself by us-
ing procedures of multidimensional scaling. This paper is mainly concerning with how
many rather than what properties are important in the substitution matrices.

The following of this paper is organized in sections covering the methods, results
and conclusion. In the methods section, the substitution matrices are coded based on
derived distance matrices. Also, it includes the use of non-linear multidimensional scal-
ing procedures to map the distance in a dimensional space. The result and conclusion
sections argue about the intrinsic dimensionality of substitutions matrices.

2 Methods

Substitutions matrices are computed as the log-odds between the relation probability qab

between amino acids pairs in sets of proteins sequences and the independent probability
papb

s(a, b) = log
qab

papb
(1)

These matrices are symmetrical s(a, b) = s(b, a) and at usual mutation rates verifies
s(a, a) ≥ s(a, b), but in general the diagonal terms are different: s(a, a) 6= s(b, b).
They are like similarity functions, but are not full similarity functions. Many heuristic
distance expressions can be obtained from these matrices. The used in this paper is:



d(a, b) = s(a, a) + s(b, b)− 2s(a, b) (2)

That has the properties of a distance matrix:

d(a, b) = d(b, a) d(a, b) ≥ 0 d(a, a) = 0 (3)

But it is no metric in the general case. The verification of additional properties
required to be a metric, which are the if-only-if and triangular properties, depends on the
s(a, b) values. Eg. the if-only-if metric property, which requires the following property:
d(a, b) = 0 ↔ a = b, is verified if the inequality s(a, b) ≤ s(a, a) can be transformed
in the most restrictive condition s(a, b) < s(a, a).

This distance is not a general purpose distance among amino acids. It is an evo-
lutionary distance in a defined biological environment, as general or specific as the
substitution matrix from which is obtained. A distance matrix among amino acids is
a dimensional-less relationship, nothing relates it with a multidimensional coordinates
system.

2.1 Multidimensional Scaling

Multidimensional scaling[9], or mapping, is the process of finding a configuration of
points in a multidimensional space as lower dimensionality as possible, whose inter-
point distances correspond, with the lowest error possible, to some previous existent
similarities or dissimilarities data[10]. In some cases, the original data have a dimen-
sional representation and mapping tries to find a good representation in a lower dimen-
sional space. In this case, feature reduction procedures as PCA and ICA techniques
are used. In other cases –as in this paper– the original distance does not imply a coor-
dinate representation. It is a set of interrelations among concepts without any explicit
dimensional counterpart.

Two distance types are involved in the mapping process. The first, d(a, b), is the
original coordinate-less measure. The second, dX(a, b), is the distance in a dimen-
sional space where X denotes the coordinates system of amino acids. The problem
to be solved is how to compute dX(a, b) as a good approximation of d(a, b), which im-
plies the computation of the vector set: X(a). The Sammon method [11] is a non-linear
mapping procedure that provides a good ratio of result quality to computational com-
plexity [12–14]. It maps a distance function to a reduced dimensionality space based on
the minimization of an objective function by assigning trial coordinates to each amino
acid.

The goal function is related to the relative error between the original dimensional-
less distances, d(a, b), and the dimensional ones, dX(a, b). Consequently, several so-
lutions can be obtained if some local minima exist. The Sammon method requires the
minimization of the goal function G(X) which likes a relative error of the mapping
process:

min
X

G(X) =

∑
a

∑
b<a

[dX(a,b)−d(a,b)]2

d(a,b)∑
a

∑
b<a d(a, b)

(4)



The optimal solution X is not unique. There are some freedom degrees related to
the geometrical transformations that preserve the distance dX , eg. translations, rotations
and sign inversion. The dimensional distance function is based on the L2 norm:

dX(a, b) =

[
n∑

i=1

|Xi(a)−Xi(b)|2
] 1

2

(5)

To increase the efficiency of computational procedures, the vector X(a) ∈ Rn pro-
vided by the optimization procedure is transformed into the Y(a) vector in the integer
range [0, 255] by using geometric transformations of translation and scaling. This dis-
crete version can be coded by using integer arithmetic, more efficient that the float point
one. The translation to coordinates origin does not modify the distances, but the scaling
to fit the [0, 255] range modifies the distance with a constant factor ρ related with the
scaling factor. The relationship between the distances computed by mean of the two
vector type is: dX(a, b) = ρdY (a, b).

Some optimization methods, such as evolutionary and gradient based, can be used
to achieve the minimization of the goal function. Gradient procedures have better con-
vergence around a local minimum, while genetic procedures allow a better global op-
timization by considering several local minima. Many solutions are expected in the
proposed problem covering a wide range of local minima due to non-linearity and geo-
metrical transformations. In this paper, a genetic algorithm is used to obtain a solution
which is afterward refined by applying a gradient procedure based on the Quasi-Newton
algorithm. Genetic algorithms are good to explore the space domain, avoiding the lo-
cal minima problem. However, in practice after a large number of iterations they are
mainly working in the refinement of a local minimum, but the gradient procedures are
more efficient for this task.

3 Results

The proposed methodology can be applied to any symmetrical matrix which can gener-
ate a distance matrix. The substitution matrices used in Bioinformatics for alignments
procedures verify this property. The most used substitution matrices are the BLOSUM
family. Figure 1 shows the graphical representation of the optimal value G(n) of the
goal function in Equation (4) vs the dimensionality n of the mapping space. A fast
convergence toward null values is obtained when the dimensionality increases, which
implies a high decreasing in the marginal relevance of additional dimensions. Therefore,
after small dimensionality values of three or four, few additional gain can be obtained
with additional dimensions. This could be interpreted as most of the information con-
tained in the substitution matrix is related with a few orthogonal –independent– factors.

Table 1 shows coordinates form 1 to 5 dimensionality. These dimensions are the
most relevant. Remark that due to the random nature of genetic algorithms, two different
runs of the code can provide different solutions in the X vector, but similar –no too
much different– values in G.

The coordinates generated by the mapping process are virtual meaning-less data.
An arbitrary set of rotations, translations and sign inversions can be involved in the
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Fig. 1. Optimal goal value G(n) vs the dimensionality n of the mapping space for BLOSUM
matrices from 30 to 90 every 5, and also for 62 and 100 values. The result suggests that after
dimensionality three or four few gain is obtained by introducing additional dimensions

optimization process because these transformations are distance invariant. No control
exists on the spatial organization of the solutions, and it is a fact that random conditions
are involved in their generation. Therefore, a first appreciation is that no relationship
exists among the mapping coordinates and any variable with meaning at biological,
physical or chemical level. However, without a full refusing of these appreciations,
some kind of semantic organization can be found in the mapped space.

The general formulation of the data mining and pattern analysis problem to be
solved in order to discover the meaning of virtual coordinates is as follows: how to
relate the virtual coordinates Xi(a) or Yi(a) obtained from the mapping of the distance
d(a, b) with a set of characteristic Qj(a) with previous semantic, which in general are
no orthogonal. This is an open problem which requires future studies.

As an illustrative contribution on the discovery of some semantic in the virtual co-
ordinates, a high spatial organization of the amino acid groups can be found in the
provided results. Amino acids can be grouped according with their physical-chemical
properties. Some groups –aliphatic or aromatic– are related to the chemical structure;
others –tiny or small– are grouped with the molecular size; the polar and charged groups
are related to the electric activity, and hydrophobic group is related with their affinity
with water. It has been shown [15] that the amino acid groups have a high level of spa-
tial organization when they are mapped in a two dimensional space obtained from the
reduction of the whole AAindex database to two index according with their correla-
tions. In this line, but from a different approach, Figure 2 shows the two dimensional
mapping of the amino acids using the Y coordinates obtained from Table 1.



Table 1. The Y coordinates from 1 to 5 dimensionality of BLOSUM 62 matrix.

n 1 2 3 4 5

aa Y1 Y1 Y2 Y1 Y2 Y3 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y5

A 140 111 84 148 142 97 102 105 63 116 102 50 67 207 45
R 180 69 175 21 48 115 72 2 162 96 200 45 15 202 156
N 203 3 134 74 166 199 42 95 174 47 235 40 72 136 64
D 216 0 80 45 212 139 64 114 100 0 184 147 92 97 43
C 31 220 37 229 160 0 95 44 26 251 39 34 255 225 54
Q 164 65 131 52 93 154 134 44 149 51 178 127 85 181 158
E 190 31 112 24 138 144 104 56 123 22 190 136 62 138 123
G 228 31 34 166 209 170 0 160 92 99 127 8 7 113 0
H 239 35 219 38 61 239 115 103 252 63 187 26 47 47 181
I 97 173 99 174 57 68 182 102 95 155 40 20 86 242 126
L 89 171 125 148 30 59 170 76 116 175 41 70 92 241 144
K 173 53 153 24 92 90 89 0 120 73 173 106 0 209 117
M 115 142 137 108 34 62 162 44 142 157 87 65 88 241 180
F 59 177 181 176 1 148 150 169 158 187 12 24 65 127 184
P 255 87 0 0 156 18 129 73 0 31 86 199 65 205 16
S 154 74 99 103 149 119 59 88 103 97 147 66 94 164 59
T 131 107 57 103 139 47 63 57 83 146 171 39 137 228 86
W 0 200 255 238 22 255 38 128 241 255 0 86 170 0 180
Y 71 133 213 127 0 193 139 165 207 140 78 0 103 101 215
V 105 158 90 166 78 65 178 96 89 133 62 10 84 248 115
ρ 0.144 0.113 0.088 0.089 0.075

The small group –except N amino acid– is mapped at the bottom of the map. It
forms a region at low Y2 coordinate and extends along the whole range of Y1 one. The
aromatic group –VIL– conforms a cluster included into the strong hydrophobic group
–WFYMVIL– located at higher values of the Y1 coordinate. The opposite groups –
charged– have the lower values in this coordinate. The hydrophobic –or its opposite
hydrophilic– property of amino acids is fundamental in the dynamics and structure of
proteins[16]. Due to that the biological matter is basically an aqueous solution, the wa-
ter affinity is essential in the relation of a protein with its environment. The mutations
with significative changes in the water affinity have a high probability of generate dis-
functions, and consequently they have a low survival probability, therefore, there are
lost in the evolution process.

4 Conclusion

The aim to be exhaustive in the discovery of relevant characteristics in the substitution
matrices increases the cardinality of the characteristic set. Finding the most relevant
characteristics is more critical as the number of properties is increased, thus the def-
inition of an upper limit is a good choice to avoid the computational explosion. This
assertion expresses qualitatively the advantage of determining the intrinsic dimension-
ality of substitution matrices from themselves, instead of estimates it from a big and



Fig. 2. At left the biochemical groups of amino acids. At right a representation for the n = 2
mapping of BLOSUM 62 showing the spatial organization of some amino acid groups. Rele-
vant groups are spatially organized as clusters. Small group tends to be in low Y2 values while
hydrophobicity tends to high Y1 values.

unclosed set of characteristic. This paper hypothesizes that the computation of the in-
trinsic dimensionality – the how many characteristics problem– is better achieved as
a characteristic independent procedure. However, this does not exclude that the what
characteristic analysis is necessary.

A lot of factors could be implied in the substitutions matrices, but the main result of
this paper suggested that no too much must be considered. About three or four factors
are important for the BLOSUM test case. Multidimensional mapping of substitution
matrices could be considered an useful methodology to know about how many indepen-
dent factors are involved in these matrices. The minimizing of a goal function related
with the relative error of mapping has been used. The fast decreasing of goal function at
small dimensionality suggests a small number of independent characteristics, and also
that additional factors have a small contribution in the substitution matrix.
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