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Abstract

An automatic system aimed at producing a
compact tridimensional description of indoor
environments using a mobile 3D laser scanner
is described in this paper. The resulting de-
scription is made up of a Multi-Level Surface
Map (MLSM) and a series of plane patches ex-
tracted from the MLSM. We propose a novel
plane detection algorithm, a variant of the ef-
�cient RANSAC algorithm, that operates di-
rectly over the data structures of a MLSM and
does not need to rely on the low level laser
data cloud. The mobile 3D scanner is built
from a Hokuyo laser range sensor attached to
a 2DOF pan-tilt, which is installed on top of
a 3DX Pioneer mobile robot. The 3D spatial
information acquired by the laser sensor from
di�erent poses is used to build a large single
map of the environment using the SLAM 6D li-
brary. Experimental results demonstrate that
the described system is capable of e�ciently
building compact and accurate 3D representa-
tions of complex large indoor environments at
multiple semantic levels.
Index Terms-3D Maps, plane detection,

multilevel surface maps, laser scanner,
SLAM6D

1 Introduction

E�cient use of robots in a tridimensional en-
vironment, be it indoor or outdoor, requires
identi�cation of structures and objects present
in the world. Often these objects and struc-
tures can be described in terms of simpler

forms or primitives at di�erent semantic lev-
els. Indoors, for example, primitives based on
planes can be used to characterize most of the
elements conforming the environment. Their
descriptions and relative localizations can be
used to de�ne the internal representation or
map that is to be used by the robots acting in
the environment.
Maps are built from information acquired

from one or several sensors. There is a big deal
of di�erent sensors that can be used to cap-
ture information in a 3D scenario like monoc-
ular, stereo or time-of-�ight cameras, or range
sensors, like sonars and lasers. Maps may
be topological or metric, but metric maps is
the preferred option when geometrical features
from the environment, as distances, volumes
or surfaces, are needed.
The problem of building maps in large and

unknown environments meanwhile the system
localizes itself, widely known as the SLAM
problem, has been intensively studied by the
robotics community during the last ten years
[1]. Basically, the problem at hand is to incre-
mentally add new information to a map whilst
estimating the relative displacements between
observations and recognizing areas that have
been already explored and are present in
the map. This problem in two dimensions
has been largely studied and �in general
terms� is nowadays considered solved. The
latest achievements in SLAM, together with
the availability of faster sensors and proces-
sors, have foster the interest for extending the
SLAM problem to 3D scenarios with 6DoF ob-
servers, a context formerly termed as unfeasi-



ble due to its high computational demands.
In the present work, we describe an ap-

proach that allows to construct 3D maps for
large indoor scenarios using a mobile robotic
system equipped with a laser sensor mounted
on a pan-tilt unit. The resulting tridimen-
sional representation of the environment com-
prises two levels of description. At the lowest
level, a multilevel map (ML map) [2] is built
integrating 3D scans acquired from di�erent
poses. To correct from odometry errors, we
address the inherent SLAM problem using the
SLAM 6D software developed by NÃ¼chter
et al. [3]. From the ML map, the system
can detect planes using an algorithm that is
an optimized adaptation for plane detection
of the e�cient RANSAC (eRANSAC) method
[4]. These planar patches are used to de�ne
a second level of description in the 3D map
of the environment from which structures of
higher semantic level like walls, doors, tables,
etc, could be detected.
This paper is organized as follows: after dis-

cussing related works in section 2, the data
acquisition system will be described in section
3. The section 4 shows how the ML maps are
built. The plane detection algorithm in ML
maps will be explained in section 5. Finally,
several experimental results and conclusions
are discused in sections 6 and 7 respectively.

2 Related work

Di�erent approaches have been developed to
allow autonomous mobile robots to build tridi-
mensional maps of the environment. Several
methods use a tridimensional grid that splits
the space into portions called voxels, whose
values re�ect the occupancy of the correspond-
ing space volume [5]. Other authors have
proposed using elevation maps due to their
much lower memory requirements. In eleva-
tion maps, the environment is represented by
using a two dimensional grid where each cell
represents the elevation, i.e. terrain height,
at the corresponding point. These maps per-
mit to model large environments as shown in
[6]. However, elevation maps are badly suited
for modeling scenarios containing structures

crossing at di�erent heights over the vertical
of a point. Two illustrative examples are a ta-
ble indoors or a bridge outdoors. In order to
avoid this limitation, Triebel et al. [2] pro-
pose multilevel surface maps as an extension
to elevation maps. These multilevel maps in-
clude, at every cell of a bidimensional grid,
a list of the traversable surfaces that exist in
the corresponding vertical. An improvement
of the multilevel surface maps can be found in
[7] where they are formally described using a
probabilistic approach.

Detecting shapes in tridimensional data sets
has been studied from di�erent points of view.
Starting from a 3D data point cloud, in [8],
a 2 1

2
dimensional structure is built based on

an incremental triangulation algorithm. Simi-
larly, in [9], the authors develop a plane detec-
tion method using a more accurate range noise
model for 3D sensors to derive from scratch
the expressions for the optimum plane which
best �ts a point-cloud and for the combined co-
variance matrix of the planeâ��s parameters.
The parameters in question are the plane's
normal and its distance from the origin. In
other works, plane detection is addressed by
using the information extracted from imaging
sensors. A range imaging sensor is used in [10],
with the goal of segmenting images of indoor
environments in terms of horizontal and ver-
tical planes by means of the Normalized-Cuts
algorithm. An approach by Hähnel, Burgard
and Thrun is presented in [11]. This work
describes an algorithm for full 3D shape re-
construction of indoor and outdoor environ-
ments with mobile robots by approximating
environments using �at surfaces. Other au-
thors [12] present a method for obtaining the
location, size and shape of main surfaces in an
environment from points measured by a laser
scanner onboard a mobile robot. The most
likely orientation of the surface normal is �rst
calculated at every point, from points in an
adaptive-radius neighboring region. In other
cases, stereo cameras are used, like in [13],
where an architecture for detection and esti-
mation of planar surfaces in the scene from
calibrated stereo images is presented.



3 Data acquisition

In this work, the data acquisition system is
formed by a laser sensor coupled with a pan-
tilt, both installed onboard a mobile robot.
The laser sensor is a Hokuyo UTM-30LX with
a scan width of 270◦ and 30m. The pan-tilt
unit is a PTU 46-17.5 from Directed Percep-
tion. It has two degrees of freedom and it is
used for scanning the space in three dimen-
sions. A Pioneer P3-DX has been used as
a mobile platform and as the odometry data
source.
The data acquisition system works in a

move-and-stop way. The robot is moved till
a new pose and then a 3D scan is taken. The
pan-tilt is oriented with some pan angle α and,
then, while the pan-tilt sweeps between the tilt
start angle γs and the tilt end angle γe, the
laser sensor takes range measurements from
the environment. The laser sensor returns one
scan every 25 msecs. The tilt angular speed is
adjusted to obtain an angular separation be-
tween consecutive scans of ρ degrees at the
maximal speed allowed by the hardware.
To integrate new laser measurements into

the map we need to know the laser sensor ori-
entation at every moment. A software syn-
chronization mechanism allows to acquire new
laser measurements while the pan-tilt is mov-
ing between γs and γe. This synchronization
system avoids having to stop the pan-tilt ev-
ery time the laser begins the acquisition of
a new scan. The synchronization algorithm
takes into account the pan-tilt's initial posi-
tion when the laser scan starts and calculates
the vertical elevation angle for every measure-
ment returned by the sensor. The scan data
timestamp ts corresponds with the moment at
which the laser sensor starts acquiring a new
scan. The resolution of the Hokuyo UTM-
30LX sensor is 1440 steps per revolution. The
timestamp of range measurement mp corre-
sponding to step p is:

tp = ts +
p

1440f
(1)

In this equation, f represents the laser beam
rotation frequency. Let t0 be the instant when
the pan-tilt began its tilt movement, then, the

time di�erence or delay lp till the measurement
mp was taken is:

lp = tp − t0 (2)

The pan-tilt's tilt speed is adjusted so that
tilt angle changes in ρ degrees whilst the laser
beam completes a revolution. Thus:

υ = ρ · f (3)

Let lp be known, then, by using a pan-tilt's
trapezoidal acceleration scheme, we calculate
the tilt angle γ at which each measurementmp

was taken. The pan-tilt uses a trapezoidal ac-
celeration scheme to achieve any velocity that
is greater than the so called base speed vb. It
is considered that the pan-tilt unit can accel-
erate instantaneously from zero to any speed
up to vb. Then γ is calculated by interpolation
using this scheme.
The spatial coordinates c = (cx, cy, cz), cor-

responding to the 3D point where the laser
beam impacts, must be calculated for every
measurement returned by the laser sensor.
Thus, it is necessary to look for a transfor-
mation function f such that:

c = f(α, γ, λ,mp, u) (4)

Let λ be the laser motor, i.e. beam, an-
gle and let u = (ux, uy, uz) be the coordinates
from the pan-tilt and laser sensor localization.
The transformation f can be easily found pos-
ing this problem as a direct kinematic prob-
lem. From this point of view, our system
has three distinct joints. The �rst and second
joints are identi�ed with the pan-tilt's motors.
The third joint corresponds to the laser sensor
motor, considering the laser beam as another
link of the chain (�g. 1). Then, the transfor-
mation f can be determined by means of the
Denavit-Hartenberg method [14].

3.1 SLAM

As equation 4 clearly shows, it is necessary to
know the pan-tilt and laser sensor 3D orienta-
tion in order to merge the 3D scans taken from
di�erent places in a single map. The local-
ization of each pose is approximated by using



Figure 1: Data acquisition system envisioned as a
kinematic chain. The system is made up of a laser
sensor (in red color, upper side) coupled over a two
degrees of freedom pan-tilt. In the �gure, the base
reference system is showed.

the robot odometry. However, as it is known,
odometry errors might grow without limit due
to wheel sleepage or calibration errors. Specif-
ically, one can expect odometry errors to in-
crease rapidly with distance and turns. Hence,
it is necessary to correct this error to create a
consistent map. For solving this issue, we �rst
collected all 3D scans and then the whole scan
set is processed using the SLAM 6D package
[3, 15]. The SLAM 6D project includes a soft-
ware to register 3D point clouds into a com-
mon coordinate frame. We use this registra-
tion software to correct the localization of the
poses. This software matches 3D scans and it
considers 6DoF for the robot pose: x, y and z
coordinates and the roll, yaw and pitch angles.
As a result, corrected poses are returned. We
use the corrected poses to solve equation 4.

4 ML map building

The �rst description level of the environment
is based on Multilevel Surface Maps (MLSM)
[2] and it is built using the 3D scans processed
by the SLAM 6D package.
MLSM consists of a 2D grid where every cell

ci,j stores a structure list. Each element of this
list is represented as the mean µk

i,j and the
variance σk

i,j of the measured heights at the
position of the cell in the map. The Triebel
et al.'s goal in [2] is to obtain an environmen-

tal representation that allows robot navigation
in tridimensional environments with several
traversable surfaces at di�erent overlapped
heights. So, in that work, each list element
(called surface patches) represents whether the
space at the height indicated by the mean µk

i,j ,
with an uncertainty equal to the variance σk

i,j ,
is traversable or not. Our objective, however,
is to get a map that allows us to model and
identify the objects present in the environ-
ment. Accordingly, in our map every list el-
ement, called block, represents a section of an
object surface. This permits to get a map that
represents a compact discreatatization of the
environment. This new approach introduces
some di�erences during map building.
Within our ML maps, each cell ci,j stores a

list of blocks bki,j . The returned measures p =
(px, py, pz) are incorporated in a block so px ≥
j · cell_size and px < (j + 1) · cell_size and
py ≥ i · cell_size and py < (i + 1) · cell_size.
The cell_size parameter expresses the map
resolution. Every block is represented by a
tuple (h, σ, d, π), where h is the height, σ the
variance, d the depth and π the plane contain-
ing it (this last parameter will be explained in
the next section). There are two block types:

1. Horizontal blocks represent a section of
the external upper or lower surface in an
object, for example: a �oor section or a
ceil part, a table board, etc. This kind of
blocks has a depth equal to zero.

2. Vertical blocks, in turn, represent sections
of vertical surfaces of objects like walls or
wardrobes.

When new measures are acquired, the
height and variance of horizontal blocks will
be updated using the Kalman update rule. In
vertical blocks, in turn, the height and the
variance are the height and variance of the
highest measure assigned to the block. The
depth of a vertical block is the di�erence be-
tween the upper and lower measures which
�t in the block. When new measures are ac-
quired, the map is updated as follows:

• Every time a new measure (p, σm), where
p = (px, py, pz) are the coordinates and



σm is the variance corresponding to the
measure, the cell ci,j where the measure
�ts is selected.

• In the block list of the cell ci,j we look for
a block (h, σ, d, π) that collects the new
measure. A block collects a measure if
|pz − h| < cell_size and |(h− d)− pz| <
cell_size.

• If there is a block that collects the mea-
sure and this block is horizontal and
|pz − h| < 3 ·σ, then the height and vari-
ance of the block is updated using the
Kalman's update rule. In this case, the
block keeps on being horizontal. If, in
turn, the block is horizontal but we have
that |pz − h| ≥ 3 ·σ, then the block be-
comes a vertical one with h = max(pz, h)
and d = |pz − h|

• If the block that collects the measure is
vertical then we simply update the block
height or depth as needed.

• If the new measure is simultaneously
collected by two blocks (h1, σ1, d1) and
(h2, σ2, d2), then both blocks will be
joined in a single vertical block and the
old blocks are removed.

• If the measure is not collected by any
block, or the block list of the cell is empty,
then a new horizontal block will be cre-
ated with h = pz and σ = σm, and added
to the list of cell ci,j .

5 Plane detection

We have developed, in this work, an algorithm
called e�cient Ransac in Multilevel Surface
Maps (eRMSM), as a modi�cation of the e�-
cient Ransac (eRansac) algorithm [4]. While
eRansac works in point clouds, eRMSM works
directly over the block structures of a ML map
and it focuses on detecting just planes.
Let M be a ML map that collects a set of

blocks bki,j , so (i, j) is the cell index pair where
the block falls in and k is the block index in the
cell's list, then the eRMSM algorithm detects
and returns a set of planes Π = {Π1, · · · ,Πn}

in the map. Furthermore, each block is la-
beled with an index i which indicates that the
block matches plane Πi. Matching between
a block and a plane implies that the block is
close enough to the plane and that the block is
part of a block setting with a similar orienta-
tion to the plane. When the algorithm stops,
each block bki,j will be represented as (h, σ, d, π)
where π is the index of the matching plane. A
block that does not match any plane will have
π = 0.
The algorithm iteratively produces candi-

date planes (CP) that are hypothesis of real
planes. Each CP gets a score, that is de�ned
as a function of the blocks matching the plane.
As in eRansa, at the end of each iteration the
CP with the highest score is accepted as a valid
plane only if the probability of not overlooking
a better candidate is high enough. However, in
the eRMSM algorithm we have changed the es-
timation of this probability. In our algorithm,
the number of CP needed to accept a plane
as valid is strongly reduced as we will demon-
strate in the sequel. When a CP Π is accepted
as a valid plane, each block that matches the
plane is labeled with the index i of the plane.
After a CP is accepted, any other CP that
matches the accepted plane is removed from
the CP list.
Before the algorithm begins, each block bki,j

receives a direction vector ν. This direction
vector will be used so just blocks with a sim-
ilar direction vector will produce a new CP.
This vector is the normal vector to a hypo-
thetic surface formed by the block bki,j and all
the same kind blocks, vertical or horizontal,
in a r radious neighborhood of the block. To
speed the process up, in eRMSM we use the
Chebyshev distance as the selected distance
because it does not change the result. Vector
ν is calculated by using the principal compo-
nent analysis (PCA) [16]. As eRMSM does not
work over spatial coordinates, but over map
blocks, we must supply, from each block, some
coordinates that allow to get a vector ν ∈ R3.
Two cases can be di�erentiated:

• Case 1: the block bki,j is horizontal. The
horizontal blocks are part of the up-
per or lower surface from some object



like the board in a table, or even the
oblique surface from some object like a
ramp. So, the direction vector that we
are looking for can have any orientation
in the space. In this case, from the ver-
tical blocks set BV = {bk1

i1,j1
, · · · bkn

in,jn
}

that exist in a setting with radius r
of bki,j we can get a point set PV =

{p1, · · · , pn} where pi ∈ R3. Let bkl
il,jl

=
(hl, σl, dl, πl), then the corresponding
point pl is (il · cell_size, jl · cell_size, hl).
PCA is applied to PV to compute the nor-
mal vector to the surface that has the PV

elements.

• Case 2: the block bki,j is vertical. This
block must be part of a vertical object:
a wall, a chair back, etc. Hence, the
direction vector in this block must be
a vector parallel to ground then. In
this case, from the horizontal blocks set
BH = {bk1

i1,j1
, · · · bkn

in,jn
} that exist in a

setting with radius r of bki,j we can get
a point set PH = {p1, · · · , pn} where
pi ∈ R2. Let b

kl
il,jl

= (hl, σl, dl, πl),
then the corresponding point pl =
(il · cell_size, jl · cell_size). PCA is ap-
plied to PH to compute the normal vector
(vnx, vny) to the surface that has the PV

elements. Using this two dimensional vec-
tor we get the vector VN = (vnx, vny, 0)
which is parallel to ground.

After each block has a direction vector as-
signed, Algorithm 5 is executed. The can-
didate planes are generated randomly select-
ing a block bk1

i1,j1
and two other blocks bk2

i2,j2

and bk3
i3,j3

close to the �rst that have not been
matched to any other accepted plane. The
neighborhood radius r is an algorithm's pa-
rameter that a�ects the algorithm's behavior.
If r is small, then it is possible that the three
blocks are part of the same surface, but the
plane's orientation will be a�ected by measure
errors. In other way, if r is big, then the pos-
sibility of selecting blocks that do not match
the same surface increases, but if the blocks
match the same surface, the increased distance
will compensate the measurement error. The
three selected blocks will generate a CP only if

the angles between their direction vectors are
lower than a threshold θ.

Lp ← ∅ {detected plane list}
Lc ← ∅ {candidate plane list}
FOR i = 0 to Max_cp− 1

Lc ← Lc ∪ newCandidates(r, θ)
b← bestCandidate(Lc)
sc ← SimilarOrientationSurface(b)
IF P (surface(b), sc) > pt

%matching blocks are removed:

M ←M −Mb

Lp ← Lp ∪ b
%CP that matches b are removed:

Lc ← Lc − Cm

END IF

END FOR

Algoritmo 1: Plane detection in a ML map M .

In the eRANSAC algorithm, the CP is de-
termined as the plane that includes the three
selected points (see �g. 2 (a) and (b)). Con-
trary, to �lter the surface localization error
due to measurement errors, our method de-
termines the CP in other way. The plane that
is generated from the three blocks CP cpi is
determined as a point o and a normal vec-
tor to plane VN . The point o is selected as
the barycenter of the polygon with the three
blocks as vertex and the normal vector VN as
the mean between the corresponding direction
vectors. Such a CP represents a better hy-
pothesis of a real plane (�g. 2 c).
The way a score is assigned to each CP in

eRMSM algorithm also varies in relation to
previous works. Since our algorithm works
with blocks, instead of point clouds, it is not
possible to assign the number of matching
points to CP as score, so we propose a new
score function. Now, we are going to give a
de�nition of matching between a block and a
plane. It is said that a block bki,j with a direc-
tion vector VD matches a plane Π = (o, VN )
if:

• The distance from the block to the plane
is d = dist(bki,j ,Π) < ε.

• The angle between the block's direction
vector and the normal vector to the plane



Figure 2: Di�erent ways to determine a candidate
plane. At the �gure, by simplicity, we can see the
problem in two dimensions form. a) Measures set
of a straight line. b) Determining a candidate line
as the line with minimal distance to three neigh-
bor points. c) Determining a candidate line as the
line with a normal vector that is the mean of the
direction vectors of the three points.

is β = arg(VD, VN ) < κ.

The thresholds ε and κ are system parame-
ters that adjust the goodness of the accepted
CP as valid planes.
Each CP receives a score in function of

the area of the surface that is represented
by the blocks that match that plane. To
normalize the probabilistic computations, the
area is measured in �surface units" su, where
su = cell_size× cell_size mm2. Then the CP
score is S =

∑
sbi , where sbi is the area of

the surface represented by the blocks match-
ing the plane. The block surface depends on
the kind of block: vertical or horizontal. In a
vertical block bv the corresponding surface is
sv = d

cell_size . When the block is horizontal
it has a surface sh = 1. This score method,
instead of counting the number of matching
blocks, as in the original method, has the ad-
vantage of being based on a real indicator of
the importance of the plane in the real world.
Hence, a CP that corresponds to a large sur-
face has more possibilities of being found early.
A CP is accepted as valid only if the proba-

bility of not overlooking a better candidate is

high enough. As we can see in [4], let ℘ be a
cloud of N data points and let Ψ be a shape
comprising n points, then the probability of
detecting Ψ in a single iteration is

P (n) =

(
n

k

)
/

(
N

k

)
≈
(
n

N

)k

(5)

Let k be the minimal number of elements
needed to de�ne a shape �k = 3 for planes�
thus, the probability P (n, s) of successfully de-
tecting a shape after s new candidates have
been generated is

P (n, s) = 1− (1− P (n))s (6)

At last, the number T of needed candidates
to detect a shape of a size n with a probability
P (n, T ) ≥ pt, where pt is the minimal desired
probability, is

T ≥ ln(1− pt)

ln(1− P (n))
(7)

Let equations 5, 6 and 7, and suppose that
we have as environment a corner formed by a
ground section and two walls. Let the number
of points in the cloud be equally spread over
the three planes. Hence, each plane has a third
part of the total points. Then, as 5 shows, the
probability to detect the ground in a single
pass is:

P (n) ≈
(

1

3

)3

≈ 0.037 (8)

Hence, according to equation 7, the number
of CP that we need to detect the ground with
a probability greater or equal to 0.99 is:

T ≥ ln(1− 0.99)

ln(1− 0.037)
> 122 (9)

Clearly, with other shapes that represent
less than a third part of the total information,
the number of candidates are highly increased
as usually happens in realistic environments,
where most surface planes represent little por-
tion of the total map. In the eRMSM algo-
rithm, we have introduced changes to estimate
the probability of not overlooking a better can-
didate. These changes highly reduce the num-
ber of CP that is necessary to generate before
a plane is accepted as valid.



In our approach, CP are not generated from
any three blocks of the map. On the contrary,
each CP is exclusively generated from three
neighbor blocks with a similar orientation and
therefore similar to the orientation that the
plane itself will have. Exploiting that fact, in
eRMSM algorithm, let Π be a CP where sc is
the surface of the matching blocks to the plane
and let so be the total surface of all blocks
with a similar orientation to Π, we calculate
the probability to �nd the plane in a single
pass as

P (sc) =

(
sc

3

)
/

(
so

3

)
≈
(
sc

so

)3

(10)

In the example of three planes forming a cor-
ner, the probability of �nding the plane corre-
sponding to the ground in a single pass is 1,
since sc = so and then

P (sc) ≈
(
sc

so

)3

= (1)3 = 1 (11)

In this case, we have enough with only a
single generated CP against the 123 needed
candidates using the previous approach. This
method can validate CP spurious planes or
planes with little signi�cance, i. e. with a
small total surface if the matching blocks to
the plane represent a high percentage of all
blocks with an orientation equal or similar to
the generated CP. To avoid this, it su�ces
with a threshold accepting candidate planes
only with a score greater than a value sm and
thence with a minimal surface.
The algorithm exit condition is reached

when a given number of candidates is gener-
ated.

6 Results

The system presented in this paper has been
tested in several localizations of the main
building of the Universidad de Las Palmas de
Gran Canaria's Technological Park. In the
�rst test, we steered the robot over the base-
ment and took 24 3D scans of the corridor
(see �g. 3(a)). The corridor's estimated di-
mensions are 40.5m length and 4.75m wide.

(a)

(b)

Figure 3: (a) Test scenario 1: Corridor of the
Technological Park. ULPGC. (b) Test scenario
2: Robotic laboratory at the Technological Park.
ULPGC.

The corridor has perpendicular subcorridors
of 11m length.
We used the NÃ¼chter et al. SLAM 6D li-

brary [3] to correct the odometer localization
information returned by the robot regarding
the robot's pose where the 24 3D scans where
taken. Once the poses are corrected, we build
a map from the set of measures taken in the
3D scans. A 3D visualization software was de-
veloped to make spatial zooms and rotations
of the map. In �g. 4 we can see an upper
oblique view from a map of the corridor gen-
erated using a 100mm cell size. For better vi-
sualization we have removed the �oor and the
ceiling from the map. In addition, we can see
the poses where the 3D scans were taken from.
This map allocates 44732 blocks.
Once the map is generated, the eRMSM al-

gorithm is executed. With an implementa-
tion of the algorithm optimized for a 2.4GHz
quad-core processor, it is possible to identify
12 planes in 7.8 seconds. In �gure 5 we can see
the corridor map where the blocks that match
any detected plane are depicted using di�erent



Figure 4: Upper oblique view of multilevel surface maps generated from 24 poses at the corridor. The line
in the map is the robot trajectory and the points over the line are the poses at which the scans were taken.

colors. The largest planes in this map match
about 1650 blocks. Using the eRansac test
it would be needed to generate 1132 CP (see
equation 7) to accept the �rst plane with a
probability greater than 0.9. Using our proba-
bility estimation, the �rst plane hypothesis is
con�rmed after generating 50 CP in 600ms.

Figure 3(b) shows a new test scene. In this
case, the stage is a robotic laboratory 8.3m
wide and 11.4m length. Figure 6(a) shows a
map generated using a 20mm cell size. This
map collects 196385 blocks. As in the pre-
vious test, di�erent colors in �gure 6(b) cor-
respond with blocks that match di�erent de-
tected planes.

ML maps, in the way we have generated
them, easily allow the joining or fusion of dif-
ferent partial maps of adjacent spaces. The
laboratory showed in �gure 3(b) and the cor-
ridor of �gure 3(a) are contiguous rooms in
the same building. Both spaces were indepen-
dently mapped using our approach (shown in
�gure 6(a) and 4. We have been able to gener-
ate a single map from both data sets after the
poses were corrected using the SLAM 6D soft-
ware. We can see the resulting map in �gure
7.

7 Conclusions

This paper has described an approach for
building compact 3D maps of indoor environ-
ments based on multilevel surface maps. This
kind of space representation allows to describe
the scene with detail andÂ balances spatial
resolution and memory cost adequately. These
multilevel maps are easily scalable and versa-
tile enough to provide sophisticated spatial in-
formation without having to rely on low level
data, i.e. clouds of laser data points.
In addition, an e�cient algorithm for de-

tecting planes using the multilevel surface
maps (eRSMS algorithm) has been proposed.
A key feature of the eRSMS algorithm, that
distinguishes it from the original eRANSAC
algorithm, is that it does not need to gener-
ate a high number of hypothesis in order to
identify candidate planes with high probabil-
ity. Moreover, eRSMS is easily parallelizable,
an attractive feature that may be exploited on
multicore processors.
While the system described in this paper has

proved reliable, there is a large margin for im-
provement. Future work will be directed to-
wards alleviating the o�-line 6D SLAM pre-
processing and the associated computational



Figure 5: Detected planes in the corridor map. Grey zones represent blocks that do not match any plane.
Each color represents di�erent detected planes.

(a) (b)

Figure 6: (a) Upper oblique view of multilevel surface maps generated from 8 poses at the Robotic's lab-
oratory. The line in the map is the robot trajectory and the points over the line are the poses at which
the scans were taken. (b) Detected planes in the laboratory map. Grey zones represent blocks that do not
match any plane. Each color represents di�erent detected planes.



Figure 7: This single map of the corridor and the Robotic's laboratory all together was generated from the
independent scans of both stages.

cost by using geometrical features instead of
the scan data points. Also the multilevel maps
o�er interesting possibilities for attempting a
semantic labelling of an indoor space.
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