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Abstract

This document presents an operating version of
CoolBOT, a component oriented software frame-
work for programming robotic systems, that was al-
ready presented in WAF’2002 [3] when it was at the
beginning of its development. CoolBOT has been
designed having in mind the idea of programming
by integrating software components, in order to re-
duce the developing effort typically invested when
programming robots. CoolBOT also fosters some
interesting features, such as asynchronous execu-
tion, asynchronous inter communication, data-flow-
driven processing, and cognizant failure systems. A
simple demonstrator illustrates the benefits of using
the proposed approach.

1 Introduction

Traditionally software integration has been an un-
derestimated problem in robotics, and frequently it
is a question to which it is necessary to invest much
more effort than considered initially. Software sys-
tem integration is a task demanding so many re-
sources that only a few research groups can afford
it. It seems evident that fostering cooperation and
code reuse between different research groups would
be the more convenient solution, but in practise, it
has been very rare to see research groups “import-
ing” architectures or systems that has been devel-
oped by others. In fact, reuse and recycling of code
across laboratories is difficult and nowadays not
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very common. It is clear that robotics needs to de-
velop an experimental methodology that promotes
the reproduction and integration of results and soft-
ware between different research groups. There are
multiple reasons for this situation. In general, the
approaches originated by distinct groups have not
been designed to be integrated together, and usually,
the software for control robotic systems is not easy-
to-use software. Its use and learning is not trivial,
and getting to a level of expertise high enough to
have productive results takes no little time. All that
drives frequently to develop home-made software
fitting the specific necessities of each group. Other
authors [1] have made already similar considera-
tions identifying the building of software architec-
tures as the way the robotics community has mainly
chosen to address the problem. Nowadays, multi-
ple research groups are currently working on the
construction and definition of “the software archi-
tecture” where everybody could integrate its results.
However, it is not clear that imposing “an architec-
ture” should be the way to follow. In fact, other au-
thors [5] [8] are working on more generic program-
ming tools like frameworks, which are neutral in
terms of control and system architecture. We think
it is in this last group where the work presented in
this document should be situated.

In the following sections we will introduce this
work, a component-oriented software framework
aimed to programming robotic systems. Thus, in
the next section a brief introduction will be given.
Then in section 2 their main concepts and abstrac-
tions will be briefly explained. Next, in section 3 a
simple demonstrator is commented in some detail,
and finally, in section 4 we will comment some of
the conclusions we have drawn from this work.



2 CoolBOT

CoolBOT [2] [4] is a C++ component-oriented
framework for programming robotic systems that
allows designing systems in terms of composition
and integration of software components. Each
software component [10] is an independent execu-
tion unit which provides a given functionality, hid-
den behind an external interface specifying clearly
which data it needs and which data it produces.
Components, once defined and built, may be instan-
tiated, integrated and used as many times as needed
in other systems.

In CoolBOT, compo-i1
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Figure 1:
Component

external view.

nents are modelled as Port
Automata [9]. This concept
establishes a clear distinc-
tion between the internal
functionality of an active
entity, an automaton, and
its external interface, sets
of input and output ports.

Fig. 1 displays the external view of a component
where the component itself is represented by
a circle, input ports, ii, by the arrows oriented
towards the circle, and output ports, oi, by arrows
oriented outwards.
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Figure 2: Component internal view.

Fig. 2 depicts an example of the internal view of
a component, concretely the automaton that mod-
els it, where circles are states of the automaton, and
arrows, transitions between states. Transitions are
triggered by events, ei, caused either by incoming
data through an input port, or by an internal condi-
tion, or by a combination of both. Double circles
indicate automaton final states. CoolBOT compo-
nents interact and inter communicate each other by
means of port connections established among their
input and output ports. Data are transmitted through
port connections in discrete units called port pack-
ets. Port packets are also classified by their type,

and usually each input and output port can only ac-
cept a specific set of port packet types.

CoolBOT introduces
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Figure 3: The control
port, c, and the

monitoring port, m

two kinds of variables
as facilities in order to
support the monitoring
and control of compo-
nents: observable vari-
ables, that represent fea-
tures of components that
should be of interest
from outside in terms of

control, or just for observability and monitoring
purposes; and controllable variables, which repre-
sent aspects of components which can be modified
from outside, in order to be able to control the inter-
nal behavior of a component. Tables 1 and 2 enu-
merate respectively the default observable and con-
trollable variables present in all components.

Table 1: Default observable variables.

Default Observable Variables

Name Brief Description

state (s) Automaton state where the component
is situated.

priority (p) Current component execution priority.

config (c) Requests a supervised configuration
change, or confirms configuration
commands.

result (r) Result of execution.

error description (ed) Error description indicating a locally
unrecoverable exception.

Table 2: Default controllable variables.

Default Controllable Variables

Name Brief Description

new state (ns) Desired automaton state where the
component is commanded to go.

new priority (np) Desired execution priority the compo-
nent is commanded to have.

new exception (nex) Externally induced exception.

new config (nc) Component’s configuration can be
modified and updated during execution
through this controllable variable.

Additionally, to guarantee external observation
and control, CoolBOT components provide by de-
fault two important ports: the control port and the



monitoring port, both depicted in Fig. 3. The moni-
toring port: which is a public output port by means
of which component observable variables are pub-
lished; and the control port, that is a public input
port through which component controllable vari-
ables are modified and updated. Fig. 4 illustrates
graphically a typical execution control loop for a
component using these ports where there is another
component as external supervisor.

Internally all com-
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Figure 4: A typical
component control loop.

ponents are modelled
using the same de-
fault state automaton,
the default automaton,
shown in Fig. 5,
that contains all pos-
sible control paths a
component may fol-
low. The default au-
tomaton can be always
brought externally in
finite time by means
of the control port to any of the controllable states
of the automaton, which are: ready, running, sus-
pended and dead. The rest of states are reachable
only internally, and from them, a transition to one
of the controllable states can be forced externally.
The running state, the dashed state in Fig. 5, con-
stitutes the part of the automaton that implements
the specific functionality of the component, and it
is called the user automaton. The user automaton
varies among components depending on their func-
tionality, and it is defined during component design
and development. Furthermore, there are two pair
of states conceived for handling faulty situations
during execution. One of them devised to face er-
rors during resource allocation (starting error re-
covery and starting error states), and the other one
thought to deal with errors during task execution
(error recovery and running error states). These
states are part of the support CoolBOT provides for
error and exception handling in components.

Exceptions constitute a useful concept present in
numerous programming languages (C++, Java, etc.)
to separate error handling from the normal flow of
instructions in a program. Importing this concept
of exception, a CoolBOT component may define a
list of component exceptions to signal and handle
erroneous, exceptional or abnormal situations dur-
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Figure 5: The Default Automaton.

ing execution. In particular, in CoolBOT we may
distinguish two levels of exception handling:

• At local level. As a good rule of design any
component must deal with any exception first
at a local level, running its associated handler
in the way the default automaton establish (fig-
ure 5). If, as a result of the whole process
of recovering from a exception, the exception
persists, the component gets into starting er-
ror or running error states, and remains there
waiting for external intervention.

• At supervisor level. Errors arriving to an ex-
ternal supervisor in a control loop (Fig. 4)
from any of its local components must be man-
aged first by this external supervisor. In turn
those errors can be either ignored, or propa-
gated to another external supervisor situated in
a control loop of higher hierarchy in a system.

Analogously to modern operating systems that
provide IPC (Inter Process Communications)
mechanisms to inter communicate processes, Cool-
BOT provides Inter Component Communications
or ICC mechanisms to allow components to in-
teract and communicate among them. CoolBOT
ICC mechanisms are carried out by means of input
ports, output ports, and ports connections. Com-
munications are one of the most fragile aspects
of distributed systems. In CoolBOT, the rationale
for defining standard methods for data communica-
tions between components is to ease inter operation
among components that have been developed inde-



pendently, offering optimized and reliable commu-
nication abstractions. CoolBOT components inter
communicate by means of port connections formed
by output ports and input ports. Table 3 shows all
the different types of output and input ports sup-
ported by CoolBOT (on the right and on the left
respectively), and all their possible combinations.
Each type of port connection implements a differ-
ent model of interaction between components.

Table 3: Port connections.

Output Port Input Port Brief Description

OTick ITick
Implements a protocol to sig-
nal events between compo-
nents (tick connections).

OGeneric

ILast There is a queue (fifo) of port
packets in the input port (last,
fifo and unbounded fifo
connections).

IFifo

IUFifo

OPoster IPoster
There is a “master copy” of
port packets in the output port,
input ports keep local copies
(poster connections).

OShared IShared
Components share a "shared
memory" residing in the out-
put port. Implements a proto-
col of shared memory (shared
connections).

OMultiPacket
IMultiPacket

Accepts multiple type of port
packets through the same
connection (multi packet
connections).OLazyMultiPacket

OPrioriy IPriorities
Implements a protocol of
sending with priority (priority
connections).

OPull IPull
Implements a protocol of re-
quest/answer between compo-
nents (pull connections).

Components are not only data structures, but ex-
ecution units as well. In fact, CoolBOT components
are mapped as threads when they are in execution;
Win32 threads in Windows, and POSIX threads in
GNU/Linux. In general, a component needs for its
execution at least a thread in the underlying oper-
ating system, called the main thread. This is the
thread that executes the automaton of the compo-
nent, and it is responsible for maintaining the con-
sistency of the internal data structures that conform
the internal state of the whole component. Addi-
tionally, in order to make a component more re-
sponsive, it is possible to distribute the attention of
a component on different input ports using different
threads of execution called port threads.

CoolBOT components are classified into two
kinds: atomic and compound components.
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Figure 6: Compound components.

• Atomic components that have been mainly de-
vised in order to abstract low level hardware
layers to control sensors and/or effectors; to
interface and/or to wrap third party software
and libraries; and to implement generic al-
gorithms. In this way they become isolated
pieces of deployable software in the form of
CoolBOT components. Thanks to the unifor-
mity of external interface and internal struc-
ture the framework imposes on components,
they may be used as building blocks that hide
their internals behind a public external inter-
face.

• Compound components are compositions of
instances of several components which can be
either atomic or compound. The functional-
ity of a compound component resides in its
supervisor, depicted in Fig. 6, which con-
trols and observes the execution of local com-
ponents through the control and monitoring
ports present in all of them. The supervisor
of a compound component concentrates the
control flow of a composition of components,
and in the same way that in atomic compo-
nents, it follows the control graph defined by
the default automaton of Fig. 5. All in all,
compound components use the functionality
of instances of another atomic or compound
components to implement its own functional-
ity. Moreover, they, in turn, can be integrated



and composed hierarchically with other com-
ponents to form new compound components.

2.1 Developing Components

The process of developing CoolBOT components
and systems is resumed on figure 7 in six steps.
(1) Definition and Design: in this step the compo-
nent is completely defined and designed. This com-
prises deciding if it is atomic or not, functionality –
user automaton–, thread use, resources, output and
input ports, port packets, observable and control-
lable variables, exceptions, timers and watchdogs.
(2) Skeleton Generation: There is already a small
set of developed components, and component ex-
amples in the form of C++ classes illustrating the
most common patterns of use. It is possible to start
from one of them as skeleton, or generate a new one
from a component skeleton description language by
means of a compiler. (3) Code Fulfilling: Using the
component´s skeleton obtained in the previous step
we complete the component fulfilling its code. (4)
Library Generation: Then the component is com-
piled obtaining a library. (5) System Integration:
Next the component may be integrated in a system
alone or with other components. (6) System Gen-
eration: And finally, the system gets compiled and
an executable system is obtained. With it, we can
already test the whole integration with our compo-
nent.
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Figure 7: The development process.

3 A Simple Demonstrator

CoolBOT has been conceived to promote integra-
bility, incremental design and robustness of soft-
ware developments in robotics. In this section, a
simple demonstrator will be outlined to illustrate
how such principles manifest in systems built using
CoolBOT. The first level of this simple demonstra-
tor is shown in Fig. 8 and it is made up of four
components: the Pioneer component which encap-
sulates the set of sensors and effectors provided by
an ActivMedia Robotics Pioneer robot; the PF Fu-
sion component which is a potential field fuser, the
Strategic PF component that transforms high level
movement commands into combinations of poten-
tial fields; and finally, the Joystick Navigation com-
ponent which allows controlling the robot using a
joystick. The integration shown in the figure makes
the robot to avoid obstacles while executing a high
level movement command like, for example, going
to a specific destination point.
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Figure 8: The avoiding level

The second and last level of our demonstrator is
depicted in Fig. 9. Note that the systems adds two
new components, the Sick Laser component which
controls a Sick laser range finder and the Scan
Alignment component that performs map-building
and self-localization using a SLAM (Simultaneous
Localization And Mapping) algorithm [6][7].

In particular, the integration depicted in Fig. 9
works as follows. The Sick Laser component works
in a continuous loop, periodically reading the laser
device and publishing the data by means of a poster
output port. This component receives odometry
packets from the Pioneer component in order to be
able to stamp every scan with the robot pose at the
time the scan was taken. The Scan Alignment com-
ponent communicates with the Pioneer and Sick
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Figure 9: The whole system

Laser components, it reads scans and preforms pose
corrections which are sent to the Pioneer compo-
nent that in turn will correct the pose and its as-
sociated covariance. The component does this by
means of a simultaneous localization and mapping
algorithm which produces a map of the environment
[6][7]. This map is also published in an output port
to be used by any other component. So, now, the
system allows a robot to make self-localization and
map building, at the same time that it avoids obsta-
cles.

3.1 Control Interface

In CoolBOT, as we have mentioned in section 2 ev-
ery component presents a uniformity of external in-
terface and internal structure. This is suitable for
implementing a control system that allow us to con-
nect to several components and control them. Such
a system could be able to control and observe the
behavior of a component by means of its control and
monitoring default ports. At the same time it could
be able to “sniff” port connections between com-
ponents. This is very helpful when trying to debug
such systems or to check its normal operation.

For the system integration of Fig. 9 was designed
a graphical front-end to control and observe the sys-
tem during operation, a snapshot appears in Fig. 10.
As we can see the figure shows the map, the cur-
rent scan and the result of the corresponding points
and tangent calculations, on the left side we can see
part of the controlling interface which allow us to
change the state of every component, and connects

Figure 10: The control interface.

to different ports of the system to have a look to
the different information (robot odometry, odome-
try corrections underdone, laser scans, the map as it
gets built, etc.). Moreover, it is possible to change
some operational controllable variables (frequency
of laser scans, Scan Alignment component param-
eters, etc.). Additionally, it is possible establish
different paths the robot should follow during map
building. Besides, as we have commented previ-
ously it is also possible to control the robot move-
ments directly with a joystick device.

3.2 Test and Results

Robustness is an important aspect in robotics, and
CoolBOT has aimed some of its infrastructure to
facilitate robust system integration. As every com-
ponent works in an autonomous and asynchronous
fashion, the system does not have to stop running
whenever any of its components enters into an er-
ror unrecoverable state, on the contrary, it can keep
working with part of its functionality (if possible),
or waiting for the faulty component to restart its
normal execution. Focusing on the robustness of the
system we prepared several tests that show the be-
havior of the the system previously presented upon
the malfunction of any of its components.

In the system of Fig. 9, the most important com-
ponents are: the Pioneer, Sick Laser and the Scan



Alignment components. Based on these three com-
ponents, two tests were made. The first of them
shows the way the system works whenever any of
the components hangs, and the second one is re-
lated to the degradation of the system when the Sick
Laser component stops running.

• First Test. The main goal is to overcome a sit-
uation provoked by a faulty component with-
out collapsing. It should be able of keeping
operation, either running, or waiting for the
faulty component to restore the situation. In
this test the system did not collapse when any
combination of its component was in an non-
recoverable error state. Table 4 enumerates ev-
ery possible combination of error states in any
component. In the three first columns R stands
for Running and E for Error. Any of the errors
shown in Table 4 does not lead the system to
a fatal situation, except if we consider the last
case. The asynchronicity of execution, initia-
tive and communications between components
allow them to keep the system working until
the faulty one is recovered, or the whole sys-
tem is explicitly stopped.

• Second test. In Table 4 there are some sit-
uations during system operation that lead to
odometry degradation. If the Sick Laser or
the Scan Alignment component gets into erro-
neous operation, the SLAM algorithm respon-
sible for the pose error, will not work. In this
situation, the Pioneer component will keep
working but as the robot moves, its pose will
degradate. For showing this degradation and
its subsequent recovering we have made a real
experiment where the Sick Laser is provided
with a mechanism for reinitializing the con-
nection with the laser device upon abnormal
disconnection. Thus, for example if the serial
connection to the laser is physically broken the
component will keep trying to recover com-
munications with the device by restarting the
connection periodically. Therefore, if the se-
rial connection is repaired, the component will
restart its normal operation. Once the laser is
working again, the Scan Alignment component
will receive againg new scans and will produce
new corrections which, in turn, will be sent to
the Pioneer component, finishing in this way,

odometry degradation.

Table 4: Error States

Pioneer
Sick Scan

Description
Laser Alignment

R R R Normal state, everything is
right.

E R R The Pioneer component does
not work. The Sick Laser
component publishes every
scan with the last received
pose. Notice that if the Pio-
neer component does not run,
the robot also stops because
of a watchdog event in such
a way that the scans are pub-
lished with the actual pose of
the robot. The Scan Align-
ment component keep reduc-
ing the error of the map built
so far.

R E R The Scan Alignment compo-
nent reduces errors in the cur-
rent map, this is done by
means of an iterative proccess
to achieve consistent maps.
But it stops integrating new
scans to the map as the Sick
Laser component is not work-
ing. In this state the robot
pose degradates (explained in
more detail in the second
test).

E E R The Scan Alignment compo-
nent reduces errors of the cur-
rent map built so far, but it
does not add new scans to the
map.

R R E In this case the Scan Align-
ment component does not
work. This leads to a degra-
dation of the pose of the robot,
but the rest of the system still
works. This case is also the
basis of the second test.

E R E The Sick Laser component
publishes scans with the last
robot pose received.

R E E The odometry of the robot
degradates.

E E E The system here does not col-
lapse itself, but it can do noth-
ing.

4 Conclusions

This document outlines a first operating version of
CoolBOT, a component-oriented C++ framework



where the software that controls a system is viewed
as a dynamic network of units of execution modeled
as port automata inter-connected by means of port
connections. CoolBOT is a tool that favors a pro-
gramming methodology that fosters software inte-
gration, concurrency and parallelism, asynchronous
execution, asynchronous inter communication and
data-flow-driven processing.

CoolBOT imposes some uniformity on the units
of execution it defines, CoolBOT components. This
uniformity makes components externally observ-
able and controllable, and treatable by the frame-
work in an uniform and consistent way. Cool-
BOT also promotes a uniform approach for han-
dling faulty situations, establishing a local and an
external level of exception handling. Exceptions are
first handled locally in the components where the
exceptions come out. If they can not be handled at
this local level, they are deferred to an external su-
pervisor, in turn, this handling may scale going up
in a hierarchy of control loops.
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