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Abstract

In this work, we present a hybrid control
structure for a mobile robotic system which
combines concepts from homeostatic control
and adaptive behavior. The homeostatic con-
trol consists of a set of control loops oper-
ating on state variables. These variables are
computed from pre-categorical sensory data
and also from high-level application results.
The adaptive behavior is implemented by a
fuzzy controller whose rules dynamically mod-
ify several system parameters, using the same
structure to control both low-level homeostatic
loops and high-level application tasks. The ob-
jective of this proposal is twofold: guarantee
an acceptable image quality keeping the per-
ceptual data into a homeostatic regime, and
use the adaptive behavior to obtain a better
resource management and dynamic response.
To validate this proposal we have carried out
some experiments using a mobile robot which
performs a line following task under variable
lighting conditions.

1 Introduction

Most of living beings are endowed with inter-
nal regulation mechanisms to keep what Ashby
named as essential variables [3] within physi-
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ological limits. This equilibrium state is nor-
mally related to the survival of the organism
and is generally referred to as homeostatic reg-
ulation.

In Figure 1 the outline of a homeostatic reg-
ulation mechanism is shown. The state of the
system is considered to fall into one of three
categories: homeostatic, overwhelmed and un-
derstimulated. The objective is to keep the
system in the homeostatic regime modifying
its behavior toward this goal. The computa-
tional processes in charge of the task are nor-
mally called drives which take as inputs the
variables to control and their desired values
modifying accordingly the behavior of the sys-
tem to restore the homeostatic regime.

Figure 1: Homeostatic regulation mechanism

This idea has been used by some authors in
the construction of systems that have to de-
velop their activity in a complex environment.
Arkin and Balch in their AuRA architecture
[2] propose a homeostatic regulation system
which modi�es the performance of the overall
motor response according to the level of in-
ternal parameters such as battery or tempera-



ture. A similar idea is proposed by Hsiang et
al. [10].

In the neurophysiological �eld, Damasio [4]
has studied the role of emotions in the decision
making process and he found that some emo-
tions, which he called primary emotions, are
in charge of taking decisions about the indi-
vidual survival, so they are part of the homeo-
static regulation mechanism. The idea of pri-
mary or innate emotions as homeostatic reg-
ulation has been used by some other authors.
Velasquez [13], introduces the concept of drive
releasers in his Cathexis architecture as the
computational systems that maintain the con-
trolled variable, i.e. battery level in a robot,
around a set point.

The works reviewed above are mainly re-
lated to robotics since robots possess elements
(e�ectors) to act on the environment. How-
ever, since the introduction of the Active Vi-
sion paradigm [1], vision systems include per-
ception strategies which are controlled by the
interaction with the environment when a spe-
ci�c goal is pursued. Thus, we can consider
the inclusion of a homeostatic regulation in
such vision systems because they share with
the previously described systems the fact that
a goal has to be achieved (survive) in a chang-
ing environment and they have to adjust their
behaviors to always get the best performance.

Some important considerations must be
taken into account when putting homeostatic
regulation into practice. Initially, an home-
ostasis control system can be con�gured as a
set of independent drives or control loops op-
erating at a prede�ned frequency. However,
in practice the execution of some loops can
a�ect others requiring certain level of coor-
dination to avoid undesired e�ects. On the
other hand, active-vision and mobile robotic
applications are usually implemented as a set
of multiple periodic tasks executing concur-
rently on limited resources systems [7, 5]. If
not properly managed, this contention could
lead to poor performance, threatening sys-
tem security or even blocking its operation,
when competing by CPU time, for example
[12]. A worst-case o�-line analysis is a typ-
ical solution for guaranteeing response times

in hard real-time systems with perfectly cali-
brated tasks. This alternative, however, is not
feasible for soft real-time applications, where
system resources become most of time infra-
utilized leading to low performance. So, there
is a need for high-level adaptation control rules
that permit a smooth degradation of system
performance when available resources are not
enough to respond to system demands, and a
controlled recovering to nominal values when-
ever possible. Some alternatives that have
been proposed for adaptation include any-time
processing scheme [14], imprecise computation
[9] or variable frequency [6].

In our context, adaptation should deal with
several aspects such as low-level homeostatic
loop coordination, inter-level coordination,
priority-based degradation, resource manage-
ment (CPU processing time, memory, energy),
etc. Additionally, we have try to design an
adaptive control that manages uniformly both
low-level homeostatic loops and high level ap-
plication tasks. The solution adopted takes
the form of a prioritized fuzzy rule controller
that operates on state variable values and er-
rors to generate execution parameters con�g-
urations as outputs.

This paper explores the introduction of a
homeostatic regulation mechanism, described
in section 2, for an active-vision robotic sys-
tem. This basic control is complemented with
a high-level hierarchical adaptive control that
will be presented in section 3. Section 4 il-
lustrates the experiments that have been car-
ried out on a mobile robotic platform equipped
with an on-board color camera performing a
simple line following task under varying light-
ing conditions. Finally the conclusions are
outlined.

2 A homeostatic regulation for a

robotic system

The performance in most of the computer vi-
sion systems relies heavily on the quality of the
images supplied by the acquisition subsystem.
On the other hand, image quality is in�uenced
by the environmental conditions, namely light-
ing conditions or distance from the object of



interest to the camera, and the setting of the
camera parameters.
In computer vision applications where the

environment E is completely controlled, i.e.
industrial applications, the camera parameters
that de�ne the quality of the image are ini-
tially tuned to get the best performance. This
is illustrated in Figure 2 where the set of cam-
era parameters δ is the one which maximizes
the performance of the system under the en-
vironmental conditions E (solid line). If the
environment changes to E′ (dashed line), for
example due to di�erent lighting conditions,
the performance of the system will be max-
imum for another set of camera parameters
δ′. So if the system does not have an inter-
nal mechanism to detect the new environment
E′, its performance will drop because it will
continue using the initial parameter set δ, and
we must rely on an external agent to readjust
the parameter set to δ′.

Figure 2: System performance vs camera parame-

ters

In section 1, we have presented the concept
of homeostasis as a mechanism to increase the
survival opportunities of an agent in a chang-
ing environment. We can use the same con-
cept to keep the performance of a vision sys-
tem as high as possible when environmental
conditions change, endowing the vision system
with a homeostatic regulation mechanism. In
a vision system, changes in the environmental
conditions a�ect the quality of the acquired
image. For example, if the temperature of the
light source varies, the white balance changes.
Thus, the homeostatic regulation tries to com-
pensate for these e�ects on the image quality
making use of the con�gurable parameters of
the camera (iris, focus, zoom, white balance,

...).

Figure 3: System performance with the introduc-

tion of the homeostatic regulation

Taking the performance-environment anal-
ysis (Fig. 2) up again, the e�ect of introduc-
ing the homeostatic regulation mechanisms in
the system can be seen as a spreading of the
range of admissible environmental conditions
(Fig. 3). In this extended range, the system
will be able to give an acceptable performance
without the aid of external assistance.

Figure 4: Mapping of the di�erence between de-

sired and real value of the state variable

Due to the variability of the di�erent mea-
sures, we have introduced a normalization
phase to get the error value into the range [-
1,+1], making use then of a sigmoid function
(Fig. 4) to map error and recovery actions.
With the error value restricted to [-1,+1] we
can de�ne the same recovery threshold for all
the state variables independently of the nature
of the measure they are computed from. Five
di�erent regions have been de�ned according
to the error value: a homeostatic region, two
recovery regions and two urgent recovery re-
gions.
The split of the recovery region into two

di�erent ones will allow to implement a dis-
cretized proportional control strategy, giving



more strength to control action when the er-
ror value is in the urgent recovery region than
when in the normal recovery region. In this
work, the homeostatic regulation is based on
two state variables directly obtained from the
images (h_luminance and h_whitebalance).
This variables will be referenced as homeo-
static variables which re�ect the internal state
of the vision system.

Luminance The h_luminance homeostatic
variable is computed from the luminance
of the image by dividing the image into
�ve regions: upper (upper region ) and
lower strip (lower region) and the cen-
tral strip divides into three regions (left,
central and right region); similarly to the
method proposed by Lee et al. [8].These
�ve regions allow us to get di�erent Au-
toExposure (AE) strategies according to
the nature of the object of interest giving
di�erent weights to the average luminance
in each region.

White Balance For applications based on
color it is necessary to have a certain con-
stancy because depending on the color
temperature of the light source the same
color appears di�erent in the image. This
situation can be dealt with using white
balance techniques because a white sur-
face has the same power spectrum than
the one of the light source. As the white
surface should appear to be white inde-
pendent of the light source, we can use
it to get a balance. To do it dynamically
we adopt the Grey World [11] assumption
which tries to make the average amount
of green, blue and red in the image equal,
by adjusting the red and blue gain param-
eters.

An important element in a homeostatic
mechanism is its adaptive aspect. When the
internal state of the body is too far away from
the desired regime, the homeostatic mecha-
nism must recover it as soon as possible. In
some cases, this can be achieved by using a
proportional controller as it was commented
earlier. When the local solution is not enough,

it is necessary to give less priority to other
tasks. To accomplish this, we have used a
high-level adaptive behavior, that will be de-
scribed in the following section.

3 Adaptive control

The basic homeostatic control described pre-
viously has been complemented with a higher
level adaptive control in order to both im-
prove performance and �t the special charac-
teristics of mobile robotic systems. On one
hand, the homeostatic regulation loops pre-
cise an external supervision to avoid undesir-
able results. At low level, control loops should
be coordinated to take into account interde-
pendencies, as several homeostatic loops exe-
cuting simultaneously can produce side e�ects
on each other that extend settling times. In
other cases, it simply makes not sense execut-
ing some loops when others are far out from
their desired regime values (e.g. focussing on
a very dark image). Additionally, some high
processing level tasks depend on the stabiliza-
tion of the homeostatic level to produce valid
results, so their execution should be condi-
tioned to this situation.

On the other hand, targeting mobile robotic
systems implies that adaptive control must
deal with a multiple-task shared-resource sys-
tem. The global system operation normally
requires the execution of multiple homeostatic
control control loops as well as high-level ap-
plication tasks concurrently. In case of re-
source shortage, low priority tasks have to be
slowed-down or postponed, releasing resources
for higher priority tasks. Another interesting
policy that we can implement in our adaptive
controller is a relaxation behavior to save re-
sources when variable levels are inside homeo-
static regime.

As previously sketched in the introduction,
multiple objectives are pursued with the ad-
dition of adaptive control. The most rel-
evant are the following: homeostatic loop
and inter-level coordination, shared resource
management, uniform multilevel structure and
priority-based control. We will analyze these
characteristics here in more detail. The �gure



5 shows the control scheme combining home-
ostasis and adaptation.

3.1 Fuzzy control implementation

We have designed a fuzzy adaptive control
based on the con�guration of each task in the
system as a periodic process, with a desired
frequency of operation to be respected when-
ever possible. A set of fuzzy rules take inputs
from homeostatic system and state variables
to produce commands that can modify execu-
tion parameters. To make the control e�ective
two types of actions are generated from fuzzy
rules: quality and frequency commands. The
quality signals force the output generated by a
task to have a certain quality level, implicating
normally a variation in the resource consump-
tion. The frequency signals command new op-
eration periods to the tasks, allowing also a
modi�cation on resource demands.

At high-level we can de�ne some variables to
module the performance of application tasks
using the same adaptive scheme than for
homeostatic loops. These variables have nor-
mally the purpose of characterizing environ-
mental situations that should in�uence execu-
tion parameters.

3.1.1 Control objects

The adaptive control scheme is implemented in
terms of a set of four objects: controller, rules,
inputs and loops. The Controller represents
the basic object of the control system. It con-
tains a set of rules that de�ne the control strat-
egy and a method to fuse the actions generated
by each rule to obtain the resulting command.
Some fusing methods that have been imple-
mented are highest priority times certainty
product and averaged command weighted by
priority and certainty.

The Rules take the form of fuzzy implica-
tions with conditions on system inputs as an-
tecedents, and actions on system tasks as con-
sequents. A rule is characterized by a priority
value and a method to combine the certainty
of each premise to give the certainty of the rule
(minimum, mean, product). Additionally, the

action part is de�ned by the type of control ac-
tion and its target either static (list of tasks) or
dynamic (most CPU-demanding, most power-
consuming, lowest priority, etc.).

The Inputs constitute storing objects to
register system perceptions keeping a circu-
lar bu�er with latest readings. Several input
types have been considered: homeostatic vari-
able value, homeostatic error and high level
state variables. Additionally, di�erent acqui-
sition methods for recovering input data are
available, including latest value, n-average,
maximum, etc.

The Loops objects keep an internal repre-
sentation of the di�erent tasks in the system.
Each task is characterized by a set of param-
eters including priority, base frequency, power
consumption index or CPU load.

3.1.2 Control structure

The control structure is organized hierarchi-
cally in three main areas, listed in increas-
ing priority order: coordination of homeostatic
control loops, adaptation to controllable vari-
ables and adaptation to external variables.

These areas have been introduced to meet
the previously described requirements im-
posed on system behavior. Combined with
control objects resources, they provide an ef-
fective and highly con�gurable framework for
adaptive control. Some examples can help
to illustrate these control areas in operation.
When a homeostatic variable is out of its de-
sired value some other loops can be worth-
less. An example is white-balancing when the
scene is really dark. In this case, a coordina-
tion fuzzy rule can condition the frequency of
operation of the white-balancing loop to the
stability and zero error of the luminance loop.

The CPU load is a controllable variable
that depends on the frequencies and individ-
ual CPU load of each executing loop. In time-
pressured systems, when a maximum load is
reached frequency and quality degradation or-
ders can be commanded from adaptive rules on
system tasks to reduce computing demands.
Acceptable load reference levels can be estab-
lished and modi�ed dynamically, while target



Figure 5: Elements of the homeostatic adaptive regulation mechanism

selection takes into account priority and CPU
load as primary factors.

The battery level is an example of external
variable that forces a monotone degradation
on system performance. In energy-pressured
systems, a high priority rule should command
adaptation orders on tasks as available power
decreases. In this case, target selection is
mainly driven by priority and power consump-
tion factors.

Di�erent target selection methods and in-
put acquisition procedures can be combined
to modify the behavior of the adaptive control.
An increase on input bu�er depths, for exam-
ple, makes the system more cautious when re-
covering from degraded situations but also less
reactive. The extension of the dynamic tar-
get scope, on the other hand, makes the sys-
tem less selective and intensi�es the control
actions, at the risk of provoking oscillations.

4 Experiments

Several tests have been performed to evalu-
ate the correct operation of the homeostatic-
adaptive mechanisms on a real mobile robotic
application, using a Pioneer robot as a base
platform. The goal is to follow a line traced on
the �oor under di�erent lightning conditions
(�gure 6). The input to the system are color

images taken with a Firewire camera that has
control over zoom, focus, gain, iris, shutter
speed, red and blue gain, etc.

Figure 6: Experimental setup

The application consists on two homeo-
static loops regulating simultaneously lumi-
nance and white balancing variables from the
image. At high-level, a control loop carries out
the line following task processing the image
from the camera stabilized by the homeostatic
loops. The homeostatic regime is de�ned in
the range [-0.2,+0.2].

An additional state variable, stress, is com-
puted from high level visual task. The stress
variables tries to alert the robot on dangerous
situations. This variable is in�uenced by three
factors: the length of the line in the image,
its angle and its displacement with respect to



the center of the image x-axis. When some
of these factors is unbalanced the robot de-
creases its translational velocity to recover the
equilibrium state.
Three types of fuzzy rules have been de�ned

in the adaptive controller:

Relaxation Homeostatic loops relax their
frequency of operation when the variable
value is inside its homeostatic regime.
Here is an example:

if Error(h_lum) is ZERO

and Error(h_wbal) is ZERO

then DegFreq(loop_lum, loop_wbal)

Image Quality When homeostatic variables
related to image quality are far from
their desired values, high-level task is de-
graded slowing-down robot motion and
thus more computational resources are re-
served for homeostatic loops.

Warning When stress variable increases, a
quality degradation rule is used to guar-
antee robot security, as it is approaching
a curved zone.

Figure 7: Example of homeostatic-adaptive con-

trol - Homeostatic variables

Figures 7 and 8 show some data extracted
from a test performed on an circuit consisting
on two straight parallel segments connected by
curved sections on both ends. The collected

data correspond to a complete lap around the
circuit. Lightning varies along the path, with
a specially dark area near the beginning of the
path due to the existence of a kind of tunnel
that the robot must traverse, so that, without
homeostasis the robot task fails.
In Figure 7, the luminance value is repre-

sented together with execution frequency val-
ues for luminance and white balance loops.
As it is shown, when luminance value sepa-
rates from homeostatic regime, luminance loop
runs faster to recover image quality as soon as
possible, while white balance becomes slower.
This e�ect is specially relevant when travers-
ing the dark zone, between seconds 75 and
100. In homeostatic regime, white balance is
allowed to execute at a higher frequency while
luminance loop gets relaxed, for example when
the robot is on �rst straight segment and �rst
curve (seconds 100 to 125).
Figure 8 shows the stress value, its e�ect on

high-level task quality and the translation on
an execution command a�ecting translational
velocity. As we can see, the curved sections of
the circuit provoke an increase in stress level
that re�ects in a reduction on robot velocity,
for example when approaching and traversing
�rst curve between seconds 105 and 130. At
the middle of dark zone the robot near stops,
waiting for the recovering of image quality by
homeostatic loops.

Figure 8: Example of homeostatic-adaptive con-

trol - High level variable



5 Conclusions

We have presented a hybrid homeostatic-
adaptive control for robotic systems and its
implementation on a real platform. The intro-
duction of the homeostatic regulation mecha-
nism improves the performance of the active-
vision system, as the mean quality of the sen-
sor data increases in dynamic environments.
The combination of this low-level adaptation
mechanism with a high-level fuzzy adaptive
control has exhibited a better outcome under
variable run-time conditions. This combina-
tion allows for a common approach for both
high and low level control. In consequence, as
illustrated in the experiments, we get a highly-
con�gurable control framework that improves
the system performance and extends its range
of operation.
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